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ABSTRACT

A least squares algorithm is developed to solve for the

trajectory and transponder array coordinates of the current

velocity profiler, Pegasus. Measurement residuals and

parameter precision are computed for data quality analysis.

Travel times from a maximum of four seafloor transponders,

pressure sensor depths, and transponder positions are input

with their respective accuracy estimates. The algorithm is

used to analyze a 2250 m profile from the Monterey Canyon with

four transponders, one of which had not been positioned. This

transponder's unknown position is found and problems in the

other array coordinates identified. Transponder coordinate

precision improves by factors of ten in the horizontal and

five in depth, to about 13 m (Drms) and 2 m (1o) respectively.

Trajectory precision is about 7 m (Drms) horizontal, with high

correlation between points. Thus, the precision of horizontal

velocity components, determined by time differencing points,

is better than 11 cm/s (1o). Depth precision is better than

3 m (1a), except in the deeper portions where anomalous

pressure residuals near the depth of the transponder array

suggest systematic pressure errors needing further study.
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I. INTRODUCTION

The Oceanography Department of the Naval Postgraduate

School is presently conducting a study of ocean current

velocities in the waters off the central California coast in

the area of the Monterey Canyon. During the course of the

study, several stations have been established for the

collection of data. Station 10, northernmost in this chain of

stations and the primary focus for analyses presented in this

thesis, contains four seafloor transponders, one of which was

considered to have an essentially unknown position at the

beginning of the work described here.

The main oceanographic instrument used in this survey is

the dropsonde Pegasus. As it descends and ascends through the

water column, it records at 16 second intervals, both the data

from oceanographic sensors and the time for return travel of

acoustic signals from transponders previously set in place on

the ocean floor.

In the past, Pegasus-generated velocity studies have used

the raw data in various ways. The trajectory of the

instrument has been fitted to a curve which was then differen-

tiated with respect to time in order to produce the horizontal

velocity components (Halkin et al., 1985). Alternatively, and

as is the present practice at NPS, velocities have been
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calculated from position differences and then simoothed with a

spatial filter such as a seven point running average.

This study outlines a method of determining the current

velocities and their precision by applying a least squares

adjustment procedure, adapted from geodetic survey techniques,

whereby all observational data are used simultaneously.

Specifically, three basic problems will be analyzed:

* The precision of the transponder coordinates from which
the position of Pegasus is derived.

* The precision of the Pegasus positions and consequently
the current velocities derived from Pegasus navigation.

* The depth at which pressure becomes critical in solving
for velocities.

Discussions of this topic will appear in the following

sequence:

* Chapter II provides background information on the
transponder network and the Pegasus system and its
positioning.

* Chapter III discusses sources of error resulting from
systematic and observational inaccuracies in the data.

* Chapter IV gives a brief explanation of the least squares
adjustment process.

* Chapter V describes the final procedure used.

* Chapter VI discusses the results obtained.

* Chapter VII provides conclusions and recommendations for
future consideration.

* Appendices contain algorithms and explanations of the
Fortran programs used.

2



II. BACKGROUND

The area being surveyed is composed of ten stations

located just off the California coast approximately between

36005 ' and 36039 ' North Latitude, and 122008' and 124013' West

Longitude. Of particular interest here is Station C10,

northernmost in the chain and located in the Monterey Canyon

about ten miles west of Monterey (see Figure 1).

A. TRANSPONDER NETWORK

At this station four transponders were deployed, horizon-

tally separated by distances somewhat equivalent to transpon-

der depths (around 2000 m). Three of these transponders,

responding at 11.5 kHz, 12.0 kHz, and 12.5 kHz, respectively,

were located by the survey vessel according to traditional

methods as described below. However, the bandwidth of the

shipboard receiving instrument was too narrow to pick up the

13.5 kHz signal from the fourth transponder, and therefore its

position was largely unknown. (Table 1 defines transponder

abbreviations, their frequencies, and their approximate

depths. Figure 2 shows the survey net for Station Cl0.)

3
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TABLE 1

C10 TRANSPONDERS

Transponder 1 Ti 12.5 kliz 1880 mn

Transponder 2 T2 12.0 ki-iz 1990 mn

Transponder 3 T3 11.5 kHz 2230 mn

Transponder 4 T4 13.5 kliz 1890 mn

-1-1000-OOC 
FDE

,f,~,1200

000

T2

Figure 2. Station C1O Survey Net
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B. SURVEYING A TRANSPONDER NETWORK

1. Transponder Depth

To determine each available transponder depth, the

survey ship homes in on the instrument.'s signal until a

minimum time is recorded, thereby assuming the ship to be

directly over the instrument (see Figure 3). An appropriate

harmonic mean sound velocity multiplied by one way signal

travel time produces the depth of the transponder.

IF1 P

TRACK

TRANSPONDER

Figure 3. Determining Transponder Depth

2. Baselines

To establish the relative horizontal x and y coordi-

nates of transponders, baselines are determined between the

instruments. Running at a relatively slow speed (say 4-6

kts), the survey vessel attempts to cross each baseline at a

6



900 angle. The process is repeated in the opposite direction.

This procedure is then duplicated, several more times if

possible. Careful observation of the analog trace that

records round-trip travel times of the acoustic signal between

the survey vessel and the two transponders indicates when the

shortest distance has been reached, as shown in Figure 4.

BASEL INE CROSSING

I MINIMUM SLANT RANGE
FROM BOTH TRANSPOND[PS

-TI

< -- T2-

I-a.T1 RETURN

~A T2 RETURN

Figure 4. Analog Trace of a Baseline Crossing

Signals show up on the trace as parabolas approaching

one another. They will lie vertically in line if the baseline

is crossed at a 900 angle and therefore the shortest distance to

each of them is reached simultaneously. At this point the

ship will lie in a vertical plane containing the two

transponders. The sum of the two horizontal ranges will be

7



at a minimum and therefore establish the baseline (see Figure

5).

T1

Figure 5. Baseline Determination

The time of crossing, ship's course, latitude/

longitude, and Loran coordinates are noted. Time units for

each minimum range are measured and then multiplied by the

appropriate harmonic mean sound velocity to obtain slope

distances. These distances, the depths of the two transpon-

ders, and the ship's course are then used to calculate the

horizontal baseline length and the azimuth between the two

transponders. Finally, a local xy plane coordinate system is

established, setting the position of one of the transponders

at 0,0, and positioning the other transponder relative to it.

Many factors combine to make the information on this

analog trace subjective and inaccurate. The analog paper may



be set to progress at different rates producing sweeps of

0.5 s, 1 s, or 2 s, etc. The trace may actually "wrap around"

one or more times as the time interval gets longer and longer,

making page integer resolution difficult. At a one second

sweep, the full page represents (after conversion from time to

distance) meters traveled in one second, i.e., 1500 m/s.

Furthermore, if the baseline is not crossed perpendic-

ularly, a time offset between minimum ranges is observed which

decreases the length of the baseline. This error can be

removed to some extent by multiplying the time offset by the

ship's speed and then by geometric relationships, computing

the correction. This situation is illustrated in Figure 6

where TI-T2 represents the actual baseline, A, B represent

respective points on the analog trace where minimum slant

ranges are indicated, and a, b represent respective minimum

slant ranges to each transponder.

A B

T2

- -- /J

j 9-

SHIP TRACK

RETURN SIGNAL RECORD

Figure 6. Time Offset
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In addition to the above possibilities for error, an

inaccurate course heading at the time of baseline crossing

will alter the geometry of the array, resulting in inaccurate

coordinates. Further discussions of transponder depth and

baseline determinations can be found in Kuo (1985), McKeown

(1975), and Hart (1967). For an assessment of transponder

network accuracy, refer to Chapter III.

Figure 7 illustrates the CIO transponder network and

the approximate position of Pegasus drop #157 positioned in a

local coordinate system using T1 (12.5 kHz) as 0,0.

it "- - TRANSPONDERS

T2 

.' 
P- 

PLGASUS-' 

DROP 
157I

' I
/ ¥

I I

I .

T3 1.8KM

Figure 7. The ClO Local Coordinate System
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C. DESCRIPTION OF THE PEGASUS SYSTEM

The oceanographic instrume,.t Pegasus is a free-falling,

acoustically-tracked velocity profiler. It was developed by

H.T. Rossby and D. Dorson at the University of Rhode Island a

decade ago to fill a need for an instrument which would accu-

rately record the fine scale vertical structure in the ocean

and prove inexpensive and easy to handle at sea. It provides

a means to measure absolute velocity components throughout the

water column. (For the seminal paper on Pegasus, see Spain et

al., 1981.) Prior uses of Pegasus in studies of the Gulf

Stream off the east coast of the U.S. have been documented in

a paper and data report by Halkin et al. (1985).

The position of the instrument as it descends and ascends

is determined by travel time of signals emitted by Pegasus at

10 kHz every 16 seconds which are heard and then answered at

other frequencies by transponders previously set in place on

the ocean floor, and by pressure readings. These time

intervals, and temperature, conductivity, and pressure data

from oceanographic sensors, are recorded and stored in a

microprocessor-controlled memory in the instrument to be later

down-loaded aboard ship when the Pegasus is recovered.

The Pegasus model currently adapted for use by the Naval

Postgraduate School is manufactured by Benthos. It is housed

in a 17-inch glass sphere protected by a hard hat and,

according to manufacturer claims (Benthos, 1989), provides

operation to full ocean depth, integral flotation, no

11



corrosion, and large battery capacity allowing for 100 deploy-

ments without opening. (A normal NPS school cruise uses about

20 deployments.) It weighs approximately 45 kg in air and

carries eight kg of expendable weight which sink the profiler

in this present study at about 27 m/min. Six receiver

channels for communication with transponders are available

with frequencies located at 0.5 kHz intervals ranging from

11.5 kHz to 14.0 kHz. NPS supplied SEA BIRD model SBE-3

temperature sensor and SEA BIRD model SBE-4 conductivity

sensor are externally mounted with electrical interfaces,

along with a Paroscientific model 410KT pressure

transducer with a companion Intelligent Transmitter circuit

board.

D. PEGASUS POSITIONING

1. Computation of Peasus Coordinates

The position of Pegasus at each 16 second interval can

be determined by solving a system of equations using the

formula:

Time = Distance/Sound Velocity

Using one-way signal times from two transponders (see

Figure 8), the depth of Pegasus as derived from pressure

information, and an appropriate sound velocity, there will

then be two equations in two unknowns, allowing for a solution

12



PEGASUS

0

12

Figure 8. Determining Pegasus Position

of XP and YP at a given Pegasus position. The solution is

derived from the equations:

Time, = [(XP - Xj)2 + (yP - Yj) 2 + (ZP - ZI)211/V

Time2 = (XP - X2)
2 + (YP - Y2)

2 + (ZP - Z2)2112/V

where:

Timej = one-way travel time from transponders 1,2;

V - effective sound velocity along the path between
Pegasus and the transponder;

XP,YP,ZP = Pegasus position coordinates (ZP is assumed
known from the simultaneous pressure
observations);

13



Xj,Yj,Zj = transponder coordinates (assumed known).

The traditional oceanographic method outlined above

calculates Pegasus position coordinates. However, it lacks a

means of obtaining precision estimates for the derived

positions, and it is not able to use all the observed data

simultaneously. Furthermore, there is no redundancy in the

computational process and thus systematic errors or blunders

can escape unnoticed.

2. Estimating Horizontal Current Velocity

Current velocity vectors u and v (describing velocity

in the x and y directions, respectively) between two Pegasus

positions, can be obtained by taking the difference between

coordinates and dividing by the time interval:

u = (XP 2 - XP 1)/dt

v = (YP 2 - YPj)/dt

dt = 16 s

This method, like the one mentioned in the previous

section, does not provide estimates of precision and does not

make use of all available data.

14



III. SOURCES OF ERROR

Davis et al. (1981, pp. 15-20) defines measurement error

as the difference between a measured and a "true" value and

describes these errors as being generally of three types:

* blunders or mistakes.

* systematic errors.

* random errors.

Blunders can be caused by carelessness, equipment failure,

or false interpretation. They are usually large enough to be

easily spotted when results are analyzed.

Systematic errors follow a defined pattern or system,

which when discovered, can usually be expressed

mathematically. Such factors as observer limitations,

instrument imperfections or inadequate calibration,

meteorological conditions, or poor choice of mathematical

model can produce the pattern which will remain consistent as

long as the elements of the system remain the same.

Systematic errors are not eliminated by repetition of

measurements. They must be ferreted out and either removed

from the observations or their effects added to the model.

Thus, to begin such an analysis, serious consideration has to

be given to locating and defining errors resulting from

systematic and observational inaccuracies in the data.

15



Random errors are those that remain after mistakes and

systematic errors have been accounted for. The values of

these errors should be unbiased and will ideally distribute

themselves about a mean of zero. It is these random errors

that the least squares process attempts to minimize. In the

analysis described in this thesis, a considerable amount of

time was spent in determining what the estimates of the apno

standard deviations of these random errors should be, both

from the point of view of reasonable physical reality and

meaningful results. The adjustment technique uses these apo

estimates to weight the contribution of each observation to

the final solution.

The following potential error sources were studied and,

where applicable, appropriate standard deviations of the

errors were then entered as weights into the least squares

adjustment model:

* Transponder coordinates.

* Signal time.

* Velocity of sound.

* Pressure/Depth relationship.

A. TRANSPONDER SURVEY

Of prime importance is the precision of the transponder

positions. Determining these coordinates is a difficult and

time-consuming process. As noted before, in the C10

transponder net, the location of the 4th transponder could not

16



be determined by traditional methods because the band width of

the ship's receiver was not wide enough to pick up the

13.5 kHz signal. Also, it was not possible at the time to

determine more than two of the three baselines between the

three "known" points, thereby precluding a mathematical

closure of the triangle.

1. Transponder Depth

To establish a reasonable estimate for the standard

deviation of transponder depth error, it was noted that any

horizontal offset resulting from the ship's not being directly

overhead always produces a positive depth error, i.e., the

slant range must be longer than the vertical. Figure 9 is

similar to Spain et al. (1981, p. 1557) and illustrates this

process.

The solution is as follows:

(H + h)2 = x2 + H 2

2Hh + h2 = X2

2 h 2 h
x = h + = h(l +2H-211 2-H

where:

H = true transponder depth;

h = depth error.

17



Px

" H

Figure 9. Transponder Depth Error

If h << H, the last term can be disregarded, and

2x

A realistic estimate of the ability of a survey vessel

to cruise directly over a transponder by using this method is

about 100 meters (Schnebele, 1990a). Given the uneven canyon

terrain of this survey which makes resolving the position of

the shoalest depth even more difficult, it seemed reasonable

to ascribe an error of 200 m to the offset. Thus, if the true

depth lies at 2000 m and there is a horizontal offset of

200 m, there will be a depth error of about 10 m.

18



Therefore, a oz = 10 meters was chosen for transpon-

ders 1, 2, and 3. Since there was no observed depth for

Transponder 4, a depth of 1900 meters was read from the latest

NOAA chart using the position of transponder drop' and, since

it had not been surveyed in, a larger standard deviation of

100 meters attached to it.
2

G(Tlz,T2z,T3z) - 10 m

oD4Z = 100 m

2. Baselines

In determining baselines, three sources of error

predominate:

* Minimum range reading taken when the ship is offset from
the actual baseline.

* Transponder depth error propagating into the computed
baseline length.

* Error in ship's course affecting baseline azimuth.

In a simplified ideal situation where the baseline is

crossed at a 900 angle in the center of the line and the

depths of the two transponders are the same, the expected

'The transponder position was calculated from Loran
signals which are based on North American Datum 27. The NOAA
chart uses NAD83. Positions may vary up to 100 meters between
the two datums in this locality.

2After the October 17, 1989 earthquake, a depth measure-
ment of 1931 meters was made of the 4th transponder by NPS
scientist Tarry Rago in a submersible.

19



error in baseline length from measured slant ranges can be

calculated as follows (see Figures 10 and 11).

a. Baseline Error Due to R

/ /

Figure 10. Baseline Error

R = distance off baseline when slant ranges were

measured;

B = true baseline between transponders (B = Bj + B2);

b = baseline error (b = b, + b2);

20



(B I + bl) 2 R2 + B12

2Bjbj + b, 2 = 2

b1 (2B 1 + b1 ) = R2

_ R2  R2  R2  b1 b I 2bi B b l C B + _2 ) -... )
2B 1 (1 + - 2B-- 1

+2Bl

-b1

Since _ + ...) << 1,
2B1

b, and, similarly, b2  2

If, as stated above, B, = B2 = B/2, then b, = b 2 = b/2.

2 R2 R2 R2
R + R 2 R- 2 1 1 R 4

fB 2 B72+

2R
2

bR - B

This error increases the length of the baseline.
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b. Baseline Error Due to h

B--- BI E-B2

B
' C

, / 2

F T <I T2"N

h /

F--

Figure 11. Relationship of Baseline and Depth Errors

H =true transponder depth;

h =depth error;

Si slant range from ship to transponders 1,2.

S1
2 = H1

2 + B1
2  (1)

S12 = (H, + hj) 2 + (B, + J1) 2 (2)

S1 remains constant.

Eq. (2) - Eq. (1):

22



0 = 2H1hl + h, 2 + 2B 1bl + b,

1 hh

(11

But:

Blb B h I  h I 2

111 11 h =BHb( I 1 + (-) -

b ~ ~ 1 B 2

2B1Since + < 1, n + << - 1,te
-Hlh I  b I b

bl = -Hlh(-2B 1  (2W) ..

b, 1 h

Inc H . + ... ) H, 1, and (h2+ = h,) B< 1, then

B211 22 /

4Hh

- B

If H, = H2 = H, h, = h2 = h, B - B2 = B/2, b, = b= b/2, then

bh =bl +bz _ _Hh(_WIB + _)B_-_Hh(- + B2

4h 4Hh
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As shown in Figure 11, the hypotenuse representing

the given slant range of the signal must be the same in both

triangles ADE and ACF. FC must equal ED. Therefore, if the

assumed depth is increased by error, then the computed

baseline must consequently decrease.

c. Total Baseline Error

Thus the total baseline error bR + bh becomes:

= bR + bh 1 (2 R 2 - 4Hh)

Using typical figures of: B = 2000 m, H = 2000 m,

h = 10 m, and R = 100 m, it should be possible to obtain a

value for bTO Ial = ±30 m.

If the transponder depths are not the same, and

the baseline is not crossed right at the center but is crossed

on a perpendicular heading, the baseline error will be:

2 Hh Hh
R 1Hlh I  H2 h2

R 2  1+ i ( +
Total= ~2(B B B

bol -B1 +  2 B1 2 "

In addition to baseline errors discussed above, an

incorrect azimuth will add even more uncertainty. An azimuth

error of 0.50 over a baseline of 2.0 km, for example, will

produce an error in position of one end of the baseline with

respect to the other of 18 meters.
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Based on the above analysis, it was initially

assumed that the relative horizontal coordinates of Ti, T2,

and T3 would be known to approximately ±30 m. Hart (1967),

for example, claims that with careful repetitive procedures

involving all baselines in a transponder array, relative

accuracies of the order of five meters can be achieved.

As preliminary data analysis proceeded with the

C10 network, it became obvious that there were major inconsis-

tencies with the given baseline data. Preliminary adjustments

(see Chapter V) would not converge when the given transponder

coordinates were used. Further analysis suggested both length

and azimuth problems with the given T2-T3 baseline. The fact

that the T3-Tl baseline had never been determined led to a

situation in which no positional redundancy existed in the Ti,

T2, and T3 network. As a result of these problems, initial

positions of Ti, T3, and T4 were determined from the Loran

coordinates of their drop sites, while T2 was computed

relative to T1 from baseline survey data.

As a consequence of this less than ideal

procedure, it was considered that standard deviations of ±100

m should be allocated to the transponder coordinates of T2,

T3, and T4, while T1 would be assumed fixed in order to

provide a positional datum (albeit a rather arbitrary one) for

the array. The 100 m allocated for positional standard

deviations seemed reasonable in the light of both the known
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positional accuracy of Loran and the added uncertainty from

drift as the transponders settled to the bottom.

In summary, therefore, the following standard

deviations were assumed:

a(T2 ,"YT3 ,~T4 )' 10 lOM(Tx,yTx,yTx,y) 0

OT1 = 0.01 m
x,y

B. TIMING

The time observations required a consideration of how well

the acoustic time intervals could be established between

Pegasus and the transponders. The travel times were assumed

to be independent of one another. The Pegasus manual states

that the transponders have a 12.5 ms output pulse delay

accurate to within ±0.5 ms (Oceanographic Instrument Systems).

For the initial transponder adjustment, aTim. = 0.002 s was

chosen as a reasonable weight (see Chapter V), and then later

reduced to 0.0005 s for the full run with improved transponder

coordinates.

o7 ,l = 0.002 s

oTim,2 = 0.0005 s
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C. VELOCITY OF SOUND

Fofonoff (1963) states that velocity of sound is a

function of the thermodynamical and chemical state of the

water and is determined by using any complete set of variables

of state such as temperature, pressure, and salinity. He goes

on to observe that the precision of sound velocity must

consider not only that of the oceanographic data, but also of

the empirical formula used to convert these measurements to

sound speed.

Pegasus provides temperature and conductivity data which

is converted to a sound velocity profile for the full range of

the drop by algorithms published in the Unesco Technical

Papers in Marine Science #44 (Fofonoff and Millard, 1983, pp.

11-12, 49).

In dealing with slant ranges, as in this case, acoustic

refraction should be considered as well. Spain et al. (1981,

pp. 1562-1564) presents an equation derived by Vaas (1964)

which corrects for the effects of ray bending, taking into

consideration the relative positions of the projector and the

receiver even when they are at similar depths. This equation

is stated to have an accuracy of better than 0.2 m/s for all

angles and depths.

Another excellent source for acoustic refraction informa-

tion in a survey situation is the SASS Accuracy Study

Simplified Ray Bending Correction (General Instrument Corp.,

1975) and its follow-up Ray Bending Correction for Depth
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Sounders, An Informal Approach (General Instrument Corp.,

1976). These two papers develop the equations for an

effective sound velocity in detail and include graphs showing

the errors relative to lateral angles.

In this study it was found that the use of an average

harmonic mean sound velocity produced acceptable results. To

obtain this average, the sound velocity profile was used to

calculate harmonic sound velocity profiles with respect to

each transponder. These four harmonic mean profiles were then

averaged (see Figure 12) and the resulting profile used to

calculate the approximate X and Y coordinate of each Pegasus

position. The harmonic mean profiles differ for each

transponder because of the wide difference in deployment

depths. Harmonic means at the depths found here differed by

about 1.0 m/s from the average used, representing a bias of

less than 0.7 m in a typical one km path length.

Refraction was not regarded as significant for this study

because of the relatively short path lengths and small sound

velocity gradients encountered (Schnebele, 1990b). In deeper

waters with longer paths, refraction may be significant.

The harmonic mean used in this model, therefore, assumes

no refraction. The small error that it introduces was felt to

be inconsequential compared to the uncertainties in

transponder coordinates and signal travel time measurements.

Thus the harmonic means used in the adjustment were assumed to

be exact quantities without significant random error.
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Figure 12. Harmonic Sound Velocity

D. PRESSURE/DEPTH RELATIONSHIP

The algorithm used to convert pressure to depth is the

Saunders and Fofonoff formula which uses the hydrostatic

equation and the Knudsen-Ekman equation of state (Fofonoff and

Millard, 1983, p. 25). The formula includes variation of

gravity with latitude and depth and assumes standard sea
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water. This formula is said to deviate by only 0.08 meters at

5000 decibars from estimates based on EOS80, a considerably

smaller error than those in pressure measurements as shown

below.

The manufacturer of the Pegasus pressure transducer claims

a typical accuracy under difficult environmental conditions of

0.02% (Paroscientific, 1986). At our full scale of 2200 m,

this would compute to about 0.4 m. As the analysis

progressed, further inconsistencies in the data began to lead

to a suspected bias in pressure measurements, perhaps caused

by a temperature hysteresis as Pegasus drops and rises through

the deepest part of the water column. Therefore, a a = 2.00
PZ

m was taken to be the standard deviation of the Pegasus depth

measurements, i.e.,

a = 2.00.
Pz
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IV. LEAST SQUARES ADJUSTMENT

The specific task of this study was essentially to analyze

three basic problems:

* The precision of the transponder coordinates, especially
those of T4, from which the position of Pegasus is
derived.

* The precision of the Pegasus positions and consequently
the current velocities derived from Pegasus navigation.

* The depth at which pressure becomes critical in solving
for velocities.

To provide a means of answering these questions, a Least

Squares Adjustment Program was developed by Dr. John Hannah.3

This adjustment program, as well as a brief explanation, are

provided in Appendix A.

Least squares adjustment techniques are used to determine

unique solutions for unknown parameters when there are

redundant observations, i.e., more than necessary to specify

the model (Davis et al., 1981, pp. 38-39). The least squares

estimator is an unbiased minimum variance estimator which is

unique, mathematically easy to derive, and, when compared to

other estimation techniques, leads to a smaller dispersion of

random errors. It also is distribution free in the sense

3Adjunct Research Professor, CNOC Chair in Mapping,
Charting, and Geodesy, U.S. Naval Postgraduate School,
Monterey, CA., 1988-1990.
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that a distribution is needed only for confidence interval

testing (Hannah, 1989).

The mathematical model for the Pegasus data adjustment has

the general form:

Lai = Fi(xa)

L.= F 2 (Xa)

in which the first set of observations comes from Pegasus

itself in the form of return signal travel times from the

transponders to the instrument. The second set comes from an

a priori knowledge of any of the system parameters such as the

positions of the transponder coordinates, and each Pegasus

depth as calculated from pressure. In general terms, any set

of adjusted observations expressed as a function of a set of

adjusted parameters can be written in a matrix expression:

La = F(xa)

The following is adapted from a least squares adjustment

procedure written by Hannah (1981) and is used here with the

author's permission.

...These functions may be linearized by taking a first order
Taylor series expansion about some approximate values for
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the parameters, X. The first function then becomes

DF1
Lb' + VI = ,X (X.-Xo) + F(X 0 )

a Xa=X0

or

A
Lb' + V, = A1X + La'

or

A
V, = A1X + L,

in which

It F AA, - -X , X = (X.-X0)
a X a=X0

and

L, = L0
1 - I1

Similarly, the second function may be linearized to give

A
V 2 = A 2 X + L2

In the above, V, and V2 are the vectors of residuals arising
from the observations I * and Lb2 with the adjusted values of
the parameters being given by the vector X,. Assuming that
the two sets of observations are uncorrelated, then the
least squares minimum variance estimate of X based on these
two sets of observations is given by minimizing the function

A Ao= VTpPV + V2TP2V2 - 2K1J(VI-AIX-L) - 2K2
T (V2 -A 2X-L2 )

A
with respect to the unknowns V1, V2, K1, K2 , and X. The
weight matrices for each set of observations are given by P,
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and P2 1 in which P,1  -1 and P2 = E2 -1, i. e. the inverse of
Lib L b

the variance-covariance matrices of the observation sets.
Infinitely large variances are applied to non-weighted
parameters resulting in zeros in the corresponding diagonal
elements of P2-

After minimizing + and eliminating the unknowns K,, K2,
V1, and V21 the least squares estimate for X is given by the
solution of the normal equations

A

(A1
7 P1A, + A2 P2A2) X + (A, P1L, + A2TP2L2 ) = 0

Since, however, the A2 matrix arises from direct observa-
tions on the parameters, the partial derivatives withF2

respect to the parameters I-- = I, the identityJa Xa=XOM a -X
matrix and thus the above equation reduces to the form

(A TPA, + P2 )X + (A, PI L + P2L2 ) = 0

This has the solution

A
X = -(AIP 1 A, + P2 -_ + (AITPL 1 + P2L2)

The variance covariance matrix of the parameter estimates is
obtained by normal error propagation methods and is given by

Ex = (A1
TP A, + P2)

with the aposteriori variance of unit weight by

A2 MvI1T PIV 1 +V 2 T P2v20 2  v

n I + n2 - u

in which nj equals the number of (signal time interval]
observations, n2 equals the number of a prioti parameter
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observations, and u equals the number of parameters in the

adjustment....

If the assumptions going into the adjustment are good,

then the aposteriori variance should be close to 1.0. This

statistic is an indicator of the quality of the adjustment.

The least squares adjustment technique is an excellent

tool for determining solutions of unknown variables. However,

certain limitations do apply. The process assumes that all

systematic errors have been removed or accounted for, and that

all remaining errors are randomly distributed. Systematic

errors that still unaccountably exist in the observations will

bias the adjustment such that it may attempt to distribute the

errors to all the observations and shift the parameters.

Other factors which may degrade the adjustment are:

* A poor physical model such as one that ignores scale
error.

* The incorrect weighting of observations.

* Small residuals which may be a result of poor network
geometry or insufficient observations rather than good
observations.

For additional information on adjustment computations, see

Uotila (1986) for derivations of appropriate expressions for

least squares adjustments which use a variety of different

systems or groups of observations with their associated

constraints.

Appendix A gives greater detail on the least squares

adjustment process for this Pegasus data analysis.
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V. COMPUTATIONAL PROCEDURE

The data set used for most of the results below was the

downcast data from Pegasus Drop #157 on August 3, 1989.

Occasional comparison studies were also made with the #157

upcast data, and that of #158 which occurred in the same

vicinity later the same day.

As stated in Chapter II, Pegasus data is recorded every 16

seconds as the instrument descends and ascends during a

deployment. For this study, the portion of the depth profile

of Drop #157 from about 16 m to 2200 m was used, providing 306

Pegasus records. This carried the instrument from surface

waters down through the plane of the transponders.

It needs to be stressed at the outset that the

computational procedures adopted in this thesis should not be

considered as optimum, but rather were developed as processing

proceeded in order to overcome difficulties encountered with

the specific data set associated with the C10 array. If the

problems ultimately discovered with the data set had been

known at the beginning, then some procedural points in the

data processing would have been slightly revised. This aside,

the purpose of the study was to demonstrate the capabilities

of least squares estimation procedures to resolve both unknown

transponder positions and Pegasus velocity components. As
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will be seen in the following discussions, this was more than

adequately achieved.

Because of the poor initial positions of the transponders,

it was decided to select a small data set of 74 Pegasus

records from the total of 306 collected during drop #157 and

use these to help provide improved transponder coordinates.

This data set was determined by dividing the full depth of the

Pegasus drop into 36 intervals and taking a pair of

consecutive records in each interval. Using the a priori

standard deviations derived in Chapter III, an initial

solution for the 74 Pegasus positions and the four

transponders was obtained. The very small positional standard

deviation associated with T1 essentially served to hold this

transponder fixed in the :-eulting solution.

As described in Chaptet IV, (ATPIA, + P2) - is the variance-

covariance matrix of the adjusted parameters. The upper

tridiagonal portion of this matrix is stored in vector form

and can be accessed to give information on the variances and

covariances of the adjusted parameters as shown in Figure 13.

For example, the portion of this figure which describes

Pegasus Position 1 gives the variances of the x, y, and z

coordinates, oftl , I 1g, and op,,2 , respectively. The other

three elements in this upper tridiagonal, Opxlpyl, OP°Xld zl' and

0'yl i' provide the covariances between the x, y, and z

coordinates of the first Pegasus position. Similarly, the
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covariances between the coordinates of different positions are

provided in their appropriate locations as shown. The

variances and covariances of the transponder coordinates are

located in the lower right hand corner, and among themselves

comprise an upper tridiagonal 12 x 12 submatrix.

The adjustment solution is also used to compute observa-

tional residuals which in turn are used to compute an aposterio

variance of unit weight. For the 74 record run this aposteriori

variance turned out to be 0.1196, a very small number compared

to that which should ideally have been close to unity. This

a posteiori variance when multiplied through the variance

covariance matrix enables the matrix to be scaled in order

that it provide supposedly unbiased estimates of the parameter

variances and covariances. This was done with this data set

and the resulting transponder coordinates with their newly

estimated standard deviations (of the order of 10-20 m) taken

and used as apioi information in the final solution in which

all 306 records were used simultaneously. It was felt that

this procedure would enable the transponder coordinates with

their associated accuracy estimates to more closely represent

the type of situation usually found in a good transponder

network.

In retrospect, however, it appears that it may have been

more appropriate to have run the 74 point data set with OT±. =

0.0005 s rather than the 0.002 s actually used. When, toward
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the very end of this study, a UTi of 0.0005 s was allocated to

the measured time delays in the 74 point data set, the aposterio

variance of unit weight became 0.96, and the resulting

standard deviations on the transponder coordinates

approximately 40 m. The coordinate solutions for the

transponders did not change by more than 5 m in position

although the computed depth of T4 did increase by a further

10 m.

Although this second solution is to be preferred over the

first, it was felt that the work and time involved in altering

all the results and documentation already completed was not

justified, given the minimal impact that it would have on the

final results. In fact, it was clear that it would not change

any of the conclusions resulting from this study.

Ideally, when dealing with data from a number of Pegasus

drops on a single transponder network, it would be best to use

a small, but representative (in depth) data set from each

drop, and merge these together in a single adjustment to

provide an optimum set of transponder coordinates for that

array which could, where appropriate, be held fixed in

subsequent simultaneous processing of complete drops.

40



VI. RESULTS OF STATION C10 ADJUSTMENT

A. TRANSPONDER COORDINATES

With improved transponder coordinates and their associated

standard deviations determined through the 74 record procedure

described in the last chapter, the entire 306 record data set

was then run. The results from this full analysis are

discussed below.

The final transponder positions were moved (in total) from

their original Loran estimates as shown in Figure 14 and Table

2 below.

T4

/T

I\

I\
/ \ 0

/ DROP SITE \
I I

I oT

T~r ----- ---- ---- (FIXED)

Figure 14. Transponder Movement
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TABLE 2

MOVEMENT OF TRANSPONDER POSITIONS

Transponder X Y Z

T1 0 0 4.5

T2 -20.3 -41.9 -6.2

T3 32.2 116.0 -7.1

T4 -90.8 149.3 -6.5

It must be stressed, however, that this data proved to be

only internally consistent. Using the same transponder

positions (as determined by the 74 Pegasus position data set)

to adjust data from another drop #158 (which used only 13

Pegasus positions), physically nearby and later the same day,

produced somewhat different transponder coordinates although

it converged within itself. The resulting Table 3 is shown

below.

It is suspected that the reason for this inconsistency

lies both in the very low degrees of freedom in the adjustment

of drop #158 (leading to a statistically weak solution) and in

the overall weak a prio positions of the transponders. In a

well-surveyed four transponder array, this problem would not

exist.

It appears certain that the location of Pegasus within

this weak transponder array has an effect on the final

adjusted transponder positions. With the origin held fixed in
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TABLE 3

TRANSPONDER COORDINATE SOLUTIONS

Trans-

ponder X Y Z

Ti 0 0 1882.86

T2 -1387.53 1530.88 1987.15
Drop #157

T3 -1769.38 -66.52 2229.11

T4 -540.12 2049.71 1893.48

Ti 0 0 1879.13

T2 -1244.88 1502.60 1991.22
Drop #158

T3 -1779.68 -181.94 2232.52

T4 -533.65 1950.66 1896.60

Ti 0 0 -3.73

Difference T2 -142.65 28.28 -4.07
Between
#157-#158 T3 10.3 115.42 -3.41

T4 -6.47 99.05 -3.12

both cases, the array tended to skew in the direction of the

drop (see Figure 15). A set of coordinates which would be

appropriate for all drops might be obtained by making a series

of Pegasus drops out along the edges of the array near the

centers of the baselines, in addition to the drop in the

center.
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T2 • DROP SITES

0

T2 - FRO#155

Figure 15. Adjusted Array from #157 and #158 Drops

It is well to note, however, how the transponder positions

have been improved over those of our originally assumed

coordinates, especially those of T4 whose position was largely

unknown (see Table 4).

The horizontal drms values were (when using OT = 0. 0005 s):

" T1 = 0 (held fixed).

"T2 = 11.2 m.

"T3 = 13.2 m.

"T4 = 12.4 m.

These drms values suggest an improved horizontal precision

of 13.5 meters or less.
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TABLE 4

STANDARD DEVIATION OF TRANSPONDER POSITIONS

Transponder X Y Z

TI 0 0 10

Initial T2 100 100 10
Standard
Deviations T3 100 100 10

T4 100 100 100

Ti 0.01 0.01 1.88

Standard T2 8.32 7.48 1.75
Deviations
After T3 6.79 11.27 2.03
Adjustment

T4 11.67 4.12 2.78

B. PEGASUS POSITIONS

The precision of the Pegasus positions is determined from

the variance-covariance matrix as described in Chapters IV and

V. Typical values at various depths are shown in Table 5.

If geometric studies are desired, these variance-

covariance values produce a tri-axial error ellipse for each

Pegasus position. For ease of perception, the axes of these

ellipses can be convert. s to an orthogonal system through the

use of eigenvalues and eigenvectors. (For a discussion of

this process, see Mikhail, 1976.)
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TABLE 5

PRECISION OF PEGASUS POSITIONS

Depth (m) Ox Gy 0z

16 4.92 6.32 0.51

248 4.61 6.18 0.49

503 4.31 6.00 0.50

750 3.96 5.80 0.53

1000 3.70 5.62 0.58

1250 3.44 5.56 0.67

1502 3.31 5.52 0.86

1750 3.24 5.16 1.29

2005 3.53 5.06 1.98

2183 3.80 4.76 1.53

C. CURRENT VELOCITIES

Pegasus velocities were determined by using the adjusted

values of the Pegasus positions which were determined by the

methods described in Chapter V.

It is well to note here the similarities and differences

between the Pegasus positions as determined by this

adjustment, and those determined by the method currently in

use by the NPS Oceanography Department.

The initial Pegasus positions used to start this adjust-

ment had been derived by combining three observation equations

into two, and then solving the two equations for the unknown

x and y of the Pegasus position. (See procedure explained in

Appendix A.) These positions were then refined by the
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adjustment process using four transponders where Pegasus depth

was constrained by pressure.

The present method used by NPS as described in Chapter II,

uses only two observation equations to solve for the positions

(i.e., using only two transponders), without further

adjustment and without the pressure/depth constraint.

Velocities derived from these two sets of positions are

compared in Figures 16 and 17. (Both sets of velocities have

been filtered by a seven point running average.) Figure 16

plots the U components of adjustment derived velocities

against depths, those derived by using the present NPS method,

and finally the differences between the two approaches.

Similarly, Figure 17 plots comparable information for the V

components.

The profiles of the two methods exhibit very similar

configurations through much of the range, with notable

exceptions occurring at the surface, at mid-range (see

discussion of residuals in the section on depth/pressure

analysis which follows), and at the bottom of the cast.

The differences in surface velocities between the two

methods may be a result of using different sound velocity

profiles. The large divergences at depth where the adjusted

speeds peak at about 22 cm/s and those of NPS at 111 cm/s, are

almost certainly due to a loss of precision in the two-

transponder solution, as well as inconsistencies in the
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Figure 16. U Component
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Figure 17. V Component
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original pressure measurements. Table 6 provides a sample of

the velocities derived by the two approaches, and shows the

differences between them. These differences begin to increase

markedly at about 2100 m, indicating the substantial role the

adjusted transponder network and the inclusion of a pressure

observation play in the solution.

TABLE 6

VELOCITY COMPARISONS

Adjustment Velocity Differ- Differ-
derived NPS Differ- ence ence

Depth velocity* Velocity rence in U in V
(Approx.) (cm/s) (cm/s) (cm/s) (cm/s) (cm/s)(m 1) (2)(2 -1

40 14.23 13.24 -0.99 +6.30 +5.49

112 18.89 25.41 +6.52 +7.09 +6.29

660 2.10 1.65 -0.45 -0.35 +0.29

1280 10.01 10.74 +0.74 -1.01 -0.77

1380 1.08 9.45 +8.37 -7.06 -7.74

1820 10.34 12.66 +2.33 +1.93 +1.30

2090 17.32 19.49 +2.16 +0.81 +2.20

2112 19.58 35.84 +16.27 +11.61 +11.44

2145 23.07 68.05 +44.98 +33.89 +30.10

2175 16.36 110.75 +94.39 +71.56 +62.95

2190 16.36 49.76 +33.40 +25.57 +22.62

*Adjustment using a. = 0.002, up= 2.

Seven point filter used for both sets of velocities.
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D. PEGASUS VELOCITY ERRORS

Estimated velocity errors were obtained through the

propagation of positional errors found in the variance-

covariance matrix of the final run, yielding o,, o, and o, the

errors in the x, y, and z directions, respectively. This

propagation of errors proceeds as follows.

The desired velocity components are given by the

expression:

v= r =ii=Lw (X2-x1) /AtJ

where (xl,yl,zl) and (x 2 1 Y21 Z2) are the positions of Pegasus at

respective 16 second intervals (i.e., At = 16 s).

The variance-covariance of V is given by

Fu2 0Uy ouw]

a Ov Ow ap T
QW I0vu ow

where

a/X ax1/aYl 3/aZl a/5x2 1/aY2 3/az2
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and

FPl £PIP2]

E AP

L P2P 1  EP2

In this last expression EP1 and P2 are the variance-

covariance matrices for Pegasus positions 1 and 2,

respectively, while EP1P2 and E PPI are their cross

covariances. These are obtained from the full adjustment

variance-covariance matrix described in Chapter V. (Appendix

B contains an algorithm for computing the variance-covariance

matrix of the current velocities from data obtained from the

subroutine MAT in the Least Squares Adjustment program.)

These values provide information on the precision of

Pegasus velocity at each position, and change according to the

geometry between Pegasus and the transponders. Table 7

provides velocities and their standard deviations at various

depths as computed by the adjustment. The horizontal velocity

errors are greatest near the surface, and improve as Pegasus

descends toward the transponders where, in the horizontal

sense, the geometry becomes tighter. For the vertical

velocity, the reverse is true.

These velocity errors were disappointing. At the surface,

a velocity in the X direction of -17.8 cm/s had a standard

error of ±10.7 cm/s. In the Y direction, a velocity of
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TABLE 7

VELOCITIES AND STANDARD DEVIATIONS

Av.
Depth
(m) U (m/s) V (m/s) W (m/s) o (m/s) a,, (m/s) o. (m/s)

20 -0.1784 0.0169 0.4347 0.1073 0.0822 0.0403

230 -0.0886 0.0789 0.4566 0.0988 0.0759 0.0408

740 0.0236 0.0204 0.4511 0.0795 0.0621 0.045

1233 -0.0729 0.0011 0.4141 0.0643 0.0511 0.0573

1739 0.1178 -0.0238 0.4734 0.0578 0.0439 0.1107

2180 0.1989 0.0681 0.3379 0.0569 0.0454 0.1339

1.7 cm/s had a standard error of ±8.2 cm/s. At the bottom

results were somewhat improved with u = 19.9 cm/s and o = 5.7

cm/s, v = 6.8 cm/s and a, = 4.5 cm/s, but not substantially so.

These velocities and error estimates were obtained by

looking at only individual pairs of positions. The NPS

Oceanography Department computes velocities by using a seven-

point running average for each Pegasus recorded depth. This

same filtering technique used with the adjusted data would

improve precision by 1/17 or 0.38, if positions were

uncorrelated. However, these positions are correlated, so the

expected improvement is somewhat smaller.

There are two ways the precision of the unfiltered

velocities could be improved:

* Use longer time intervals, so that as At becomes larger
in the error propagation equation discussed above, the
variance-covariance matrix E-V diminishes.
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Average the 16-second velocities (in the same manner as
NPS) by using a seven-point running average which would
improve the precision if the velocities were
uncorrelated.

However, both of these techniques, while gaining precision,

sacrifice vertical resolution.

There are two important aspects to these formal velocity

errors. In the first instance the signal time intervals are

only measured to 0.0001 s. At a conventional sound velocity

of 1500 m/s this is equivalent to 15 cm in the derived range.

This in turn propagates into a velocity error of approximately

1 cm/sec between consecutive Pegasus positions if the

transponder positions are assumed to be without error.

In the second instance, the formal errors in the

transponder positions propagate directly into errors in the

Pegasus positions and thence into the velocity components.

These latter errors have by far the most significant influence

on the derived standard deviations of the velocity components

for Pegasus. This in turn provides an added emphasis on the

need for a strong transponder survey.

E. DEPTH/PRESSURE ANALYSIS

To determine at what depth the pressure/depth measurement

becomes critical in solving for current velocities, a separate

computer run was made with the standard deviation of the

Pegasus Z coordinate changed from 2.00 to 50.00 m. The

results are graphically illustrated in Figure 18.
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Figure 18. Velocities

Here, the U and V velocity components derived f rom the

adjustment using up = 2 m are plotted on the left; speed
z

differences between the U and V components of the two sets of

adjustments using up = 2, and apz = 50, respectively, are
z

illustrated on the right. The differences are minimal down

* through the water column until about 1700 m as Pegasus

approaches the plane of the transponder. DU reaches a maximum

positive difference of 1.16 cm/s at 2008 m, and subsequent

maximum negative difference of. -3.53 cm/s at 2135 m.

55



Respective values for DV are 0.49 cm/s at 2001 m and

-2.26 cm/s at 2135 m.

An analysis comparing the standard deviations of Pegasus

depth positions shows a large maximum of 36 m at a depth of

2000 m as derived from the free-floating P, adjustment,

compared with a maximum of 2 m at a depth of around 1940 m for

tightly-held P,. The latter reflects the fact that the a piori

precision estimate for pressure observations was itself 2 m,

and that travel time measurement geometry gives no additional

information on the adjusted z value.

Table 8 shows observational residuals after both of the

adjustments and compares the two sets of residuals at similar

depths. (These figures compare runs made with OTi, = 0.002 s,

rather than the final 0.0005 s.)

At the surface both sets of residuals are small. Where

the pressure/depth relationship is tightly constrained,

residuals were highest at the bottom of the cast where Pegasus

moved through the plane of the transponders, i.e., between

about 1870 m to 2240 m. Here the resolution of depth becomes

less certain due to the poorer geometry of the Pegasus-

Transponder array. These large residuals at depth indicate

there may be a bias in the pressure measurements, thus

suggesting the presence of a systematic error in the pressure

sensor (perhaps due to a hysteresis in temperature readings)

that is unaccounted for in the adjustment model.
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TABLE 8

OBSERVATIONAL RESIDUALS

Z opz  T1 T2 T3 T4

Surface 2 -0.0001 -0.0002 .0.0001 0.0001

0.0000 0.0000 0.0000 0.0000

0.0000 0.0001 -0.0001 -0.0001

50 0.0000 -0.0002 0.0001 0.0001

0.0000 0.0000 0.0000 0.0000

0.0000 0.0001 0.0000 0.0000
1400 m 2 -0.0004 -0.0012 0.0006 0.0011

(approx.) -0.0005 -0.0013 0.0006 0.0012

-0.0005 -0.0012 0.0006 0.0011

50 -0.0004 -0.0011 0.0006 0.0010

-0.0004 -0.0012 0.0006 0.0012

-0.0004 -0.0013 0.0007 0.0012

Bottom 2 0.0014 0.0011 0.0007 0.0003

0.0016 0.0014 0.0008 0.0004

0.0019 0.0016 0.0008 0.0003

50 0.0001 0.0001 0.0000 0.0000

0.0002 0.0002 0.0000 -0.0001

0.0002 0.0003 -0.0001 -0.0002

Residuals at the bottom of the cast from the adjustment

where depth was allowed a very loose constraint are uniformly

low. The differences between these two sets of residuals at

the bottom, as well as differences in velocities and an

increase in ap at this depth as discussed above, all tend to
z

corroborate the suggestion of a bias in the pressure

measurements.
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Residuals also increased in both cases for a few positions

around the depth of 1400 meters. This appeared to occur where

the trajectory of the instrument reached its most westerly

position. Reasons for this are unclear, although a possible

explanation may be related to the fact that this depth and

position approximate the location of the shelf edge of the

canyon.

It is also possible that one or more of the travel time

observations in this part of the drop had large errors. This

interpretation is further suggested by the anomalous current

shear computed at this depth from the original data (see

Figures 16 and 17).

It should additionally be noted that these large residuals

at depth and at mid-range seem to display a systematic

structure wherein their sign is consistently the same. If the

errors were truly random, the positive and negative signs of

the residuals would be distributed more or less evenly. This

situation is another indication of some systematic error which

has not been accounted for in the adjustment model.
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VII. CONCLUSIONS AND RECOMMENDATIONS

It is unfortunate that the data set and the transponder

array used in this study lacked the quality desirable for de-

tailed analysis. Many of these difficulties were, unfortu-

nately, only discovered as data processing proceeded. It is

encouraging to note, however, that the least squares proce-

dures described here enabled the identification of problems

with the data which would otherwise have passed undetected.

From a theoretical standpoint, the least squares process

must provide better results than the standard NPS positioning

techniques because of the fact that it uses all the observa-

tional data. It has the added advantage of providing vital

statistical information on the quality of the derived results.

Unfortunately, in the case of the C10 network, the uncertainty

regarding the original positions of the transponders made it

difficult to perform a comprehensive comparison between the

least squares technique and the standard NPS methodology.

It is observed, however, that the least squares method

obtained a solution for transponder positions that converged

to less than one meter, with standard deviations that were

much smaller than those with which the adjustment started.

Precision of the transponder coordinates showed horizontal

drms values of less than 15 meters, with standard deviations

of transponder depth less than three meters. While these
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figures may be optimistic (see Chapter IV), they are

indicative of the improvements which can be achieved using

these methods.

Regarding the precision of the horizontal Pegasus

positions, the standard deviation of the X values ranged from

4.9 down to 3.2 m, reaching a minimum around a depth of 1800 m

just at the upper limit of the transponder plane, and then

increasing slightly to the bottom of the cast. Pegasus Y

values showed standard deviations of 6.3 to 4.8 m, with

passage through the transponder plane not as noticeable.

Standard deviations of the Pegasus Z values, when they

were tied tightly to pressure, ranged from 1.4 m near the

surface to a maximum of 2.0 m at a depth of 1943 m. When the

depth was only loosely constrained, standard deviations varied

from 2.3 m near the surface, to 8.6 around depths of 1800 m

just prior to entering the plane of the transponders, and

reached a maximum of 36.5 at a depth of 2000 m. From there

they steadily diminished back to 10.4 at the final depth of

2165 m.

Comparison of the results of the NPS method and the least

squares method shows a considerable difference in velocities

at depths where Pegasus passes through the plane of the

transponders. This difference at depth occurs also in

velocity comparisons between adjustments made holding depth

constrained with a standard deviation of 2.0 m, and allowing

it to float more freely with a standard deviation of 50.0 m.
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This leads to a suspicion that there may be a systematic error

in the pressure reading that has not been accounted for in the

model, perhaps due to a hysteresis in temperature readings.

Accuracy of pressure observations becomes critical at depths

below 1700 m.

It was disappointing to note that the standard deviations

on the computed Pegasus velocities (when using At = 16 sec)

were often of a similar magnitude as the velocities themselves

(i.e., 5-10 cm/s). However, with resolution of signal travel

time possible only to the nearest 0.0001 s, resolution of

range becomes ±15 cm. This in turn propagates into velocity

errors in the order of 1-2 cm/sec. Therefore, it is unrealis-

tic to look for much greater precision than that.

It is recommended that:

* NPS refine the existing least squares techniques and the
adjustment software to facilitate its use on a regular
basis, for production operations.

* Four transponders be used in each network. This will
both strengthen the solutions for the Pegasus velocities
and provide a reasonable measure of redundancy for the
adjustment procedure.

* More acceptable positioning of transponders be under-
taken, within the time constraints involved, including
observation of all baselines. Close attention should be
paid to both length and azimuth.

* That a small, but well-distributed data set of Pegasus
records be used from each drop to assist in providing a
unique set of transponder positions for each network and
that these positions be held fixed in the subsequent
adjustment of the full set of records from each drop.

* Where practical, pressure information always be
collected. It both adds to the overall redundancy in the
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network and enables additional parameters to be
introduced if necessary.

A very well-controlled set of experimental data be
collected on a well-positioned five transponder network.
This will enable clarification of the following issues:

- The lack of consistency between the adjusted transpon-
der positions when using different data sets for the
same area.

- The question of pressure/depth relationships,
especially at depth.

- Possible causes for high residuals at a given depth
(1400 meters in the case of station C10).

- The introduction of additional parameters to describe
possible mis-calibration of the pressure head or
hysteresis of temperature readings.

- The investigation of the actual motion of Pegasus as
it descends and ascends.

- The geometric impact of drops made on the edges of the
transponder array as opposed to those made at the
center of the array.
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APPENDIX A

LEAST SQUARES ADJUSTMENT PROGRAM

The least squares adjustment equation for a combined

system of two sets of observations is (Uotila, 1986, p. 97):

x = -(ATp A, + A2TP2A2)-(A
TPL, + A2TP2L2)

where, in the terminology of the program:

A
x = column vector of corrections to the parameters

(NP. 1);

L = Observations (NOBS,I);

A = Jacobian matrix, or the partial derivatives of each
observation with respect to each parameter
(NOBS,NP);

AT = Transpose of A (NP,NOBS);

P = Weight matrix (NOBS,NOBS);

N = Maximum # of Pegasus positions to be determined;

NT = Maximum # of transponders in the network;

NOBS = Maximum # of observations

NP = Maximum # of parameters allowed = (N x 3) +
(NT x 3).
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A. FIRST SET OF OBSERVATIONS

1. L, Matrix

The first set of observations uses one-way travel

times from the transponders to Pegasus as the observations.

Parameters are the x, y, and z coordinates of each Pegasus

position.

Li = Fj(x)

Time = Distance/Velocity

Position 1:

Time, = [(XP1 -X) 2 + (YP 1 -Y 1 ) 2 + (ZP 1 -Z 1)2]V

Time 2 = [(XP1 -X 2) 2 + (YP 1-Y 2) 2 + (ZP 1 -Z 2 )2]P/V

1

Time 3 = [(XP1 -X3) 2 + (YP1_Y 3) 2 + (ZP 1-Z 3 ) 2] 2/V

Time 4 = [(XP1-X 4 ) 2 + (YP 1-Y 4) 2 + (ZP-Z)2]/V

Position N:

Time = time intervals from transponders 1,4;

V = sound velocity;
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XP,YP,ZP = Pegasus position coordinates;

Xi, Yi,Z i  = transponder coordinates;

f Observations = N x 4.

Each Pegasus position therefore has four time-interval

observations, one for each transponder. Thirteen Pegasus

positions will provide 52 time observations and (13 x 3)

parameters, and therefore 13 degrees of freedom for this first

set of observation equations. For each additional Pegasus

position added to the data set, an additional degree of

freedom is gained. If a prio constraints are introduced for

the transponder coordinates and the transponder positions

solved for in the adjustment (as has been done here), then the

number of observations and the number of unknowns rises by 12.

The adjustment procedure requires an a prio knowledge

of the transponder positions, the depth of each Pegasus

position (derived from the pressure information) and the sound

velocity for each Pegasus position. Estimates of the x and y

coordinates are obtained by taking the three observation

equations for each Pegasus position that contain information

from transponders T1, T2, T3 (presumably the best known).

Subtracting the first equation from the second, and the second

from the third, will yield two equations in two unknowns, and

therefore a resulting first guess solution for XP and YP at

that position.
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The L, matrix in the adjustment equation is a matrix

of differences between observed time intervals and what the

observation equations would yield using our first guess

parameters.

L, = L, calculated - L 1 observed

2. A:Matrix

The A, matrix contains the derivatives of each

observation with regard to each parameter:

A, Matrix - Fa

If

T, = [(XPj-Xi) 2 + (YP-Yi) 2 + (ZpjZi) 2]/V = D/V

i=1,2 .. 4

j = 1,2 .. N

Then

DT1 (XP1 -X1 )
aXPI = DV
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3T4  (ZPN-Z4 )

DZPN DV

The derivatives of the transponder positions will be

the negatives of the corresponding Pegasus position

derivatives.

aFi  (XPj-X)

ax. DV1

This will create a matrix in the form:

1/Pi a/aP2 3/3T1 3/aT2 D/aT 3 3/3T 4

ti Xx,x . . . . . . x,xx
Peg. t2  x.x,x . . . . . . xX
Pos 1 t3  x,x,x . . . . . . x.xx

t4  x.x,x . . . . . . x,x.x
tI ,XX ........... X,X,X

Peg. t2  x,x,x ..... ...... xx,x
Pos 2 t3  x.xx ...... xx.x

t 4  X,X,X . . . . . . X,X,X
...............................................

. . .......... . . . . . ..... ....... .....

. . . . . . . . . . . . . . . . .. . . . ......
ti X,X,X X,X.X

Peg. t2  x.x.x xx.x
Pos N t3  x,x,x xx.x

t 4  X,X,X XX,x
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where:

tj = Time;

Pi = XPJ, YPJ, Zp ;

T1  = Xj, Yj, Z1 ;

i =1,2 .. 4;

j =1,2 .. N.

If submatrices are described by

X'x'I Vx'x'x'O'O'O'O'O'O'O'O'O0

aj= x,x,x S = ,OO,x,x,x,OOOO,,O
x,x,x 0,0,0,0,0,o,x,x,x,0,0,0o /
x ,oxL o'o'o,o,o0,0ox~x~xj

Then the A, matrix becomesL a 0 0.. ....... 0 S1
0 a2 0 0 S2
0 0 a 3  0 S3

0N SN
........................ a. aJN  SN]

For each Pegasus position there will be a 4 x 3 block

for the Pegasus derivatives and a 4 x 12 block for the

transponder derivatives. All other positions in the matrix

will be zero. Therefore, to drastically reduce computer
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memory and time requirements, the program was developed to run

in a sparse matrix form whereby only the non-zero elements are

used. To do this, the whole A matrix is divided into parts:

" A--which contains the values for the Pegasus components.

" S--which contains those for the transponders.

3. P Matrix

P1, the weight matrix, is set up as a diagonal matrix

and stored in column vector form, assuming no covariances

between observations. If it is desirable to add covariances,

then an error propagation subroutine can be inserted to fill

out the weight matrix and the program altered accordingly. In

our case the chosen standard deviation for the time interval

was 0.002 s, later changed to 0.0005 s. It was entered into

the program in the error propagation section where the code

reads:

Do 35 I = 1,NT
P(1,1) = I.ODO/0.0005DO**2

35 Continue

B. SECOND SET OF OBSERVATIONS

1. L,2 Matrix

The second set of observations corresponds to various

parameters which have been observed, in this case the position

coordinates of the four transponders, and the position of the

Z coordinate of each Pegasus position which allows the depth/

pressure relationship to be constrained.
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= F(x)2

X, = X,

Yl = Yl

X,Y,Z of each transponder

Z4 =Z4

ZPi = ZP, Depth of Pegasus as computed

i = 1,N from pressure.

As described above, we already have first guess

estimates of all these observations. The L2 matrix will

initially be zero since for the first solution, the observa-

tions equal the parameters, i.e., X, = X1. However, with

further iterations, this will not be the case.

2. A, Matrix

The A2 matrix contains the derivatives of each

observation with regard to each parameter:

A2 =FJxa

For example:

3xI
- 1axI

axI
all else
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This produces the following diagonal matrix of l's and

O's:

0
0

1
0

0
1

1
1

1
1

1

1
1

1
1

1
1

3. P, Matrix

P2 is a similar diagonal matrix stored in column vector

form. It weights all Pegasus z positions to allow for

tightening or loosening the depth/pressure relationship. This

chosen standard deviation, in our case a value of 2.00, enters

the program through an interactive request at the beginning of

the program run. The standard deviation of each transponder
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position coordinate is read into the program from the original

data set. The P2 matrix will appear as:

0

0

1/ 2
]/ zl 2

(3
0

1/ P 20
z2

l/x2

/ 2
yl

C. MATRIX OPERATIONS

Now all the matrices are in place and matrix operations

can begin.

x = -(ATPA, + A2
TP2A2 )'(AI TPLI + A TP2 L2 )
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Since the A2 matrix is a diagonal of O's and l's, the

second term in the first parenthesis merely adds weight to the

appropriate diagonal position in the first term.

D. REQUIREMENTS FOR RUNNING THE PROGRAM

1. Initial Steps

Before the program is run, the following steps must be

taken:

Variables must be dimensioned adequately, following the
definitions clearly stated in the preface to the program.

The value of OTime must be defined (in our case 0.0005),
and/or the appropriate error propagation subroutine
added.

A data set file must be available for access and set up
in the following fashion:

- Transponder coordinates, each with its own standard
deviation.

- For each Pegasus position: pressure, depth, four
transponder one-way time intervals, and sound
velocity. (Sample data set is shown below.)
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Transponder TI 0.0 0.0 1878.4

Coordinates T2 -1324.6 1485.8 1993.4

T3 -ibi01.6 -182.5 2236.2

T4 -49 .3 1900.6 1900.0

Transponder Ti 00.01 00.01 10.00

Standard T2 50.00 50.00 10.00

Deviations T3 50.00 50.00 10.00

T4 SO.00 50.00 100.00
Pegasus 1 30.8 30.6 1.4145 1.5486 1.6277 1.6803 1485.310

Positions 2 213.4 211.7 1.3255 1.4245 1.5191 1.5704 14U5.100
3 398.0 594.7 1.2356 1.3083 1.4105 1.4712 1485.140

4 581.5 576.4 1.1414 1.2047 1.3062 1.3844 1485.250

764.7 757.7 1.0452 1.1140 1.2043 1.3106 1485.650

944.0 934.9 0.9592 1.0202 1.1121 1.2403 1486.200

1125.8 1114.5 0.8941 0.9381 1.0119 1.1754 1486.820

1-06.1 1292.4 0.84.05 0.8671 0.9243 1.1302 1487.570

1488.7 1472.5 0.7990 0.7944 0.8472 1.0851 1488.440

1667.0 1648.1 0.7620 0.7455 0.7922 1.0491 1489.370

1846.2 1824.5 0.7341 0.7229 0.7534 1 .0306 1490.400

2021.9 1997.4 0.7337 0.6973 0.7584 0.9940 1491.510

2200.7 2173.1 0.7415 0.6950 0.7910 0.9671 1492.760

Prs-IDepth T~ I T2 T 3  T Sound
ure Velocity

Time Intervals

* FILEDEFS for input and output files must be in place,
either typed in before the program starts or available
through a program exec. The program will run in either
WF77 or FORTVS2 fortran.

- FILEDEF 01 DISK fn ft fm (i.e., Test Data A).

- FILEDEF 02 DISK(recfm vb lrecl 132 blksize 134).

- (For large data sets, use FILEDEF 02 DISK(recfm fb
lrecl 132 blksize 13200).

Be sure enough memory is available. Two M sufficed for
running at least up through 74 Pegasus positions, but
4096 K were required for the 306 position run.

The program starts off by asking for operator input

(sample answers in parentheses), requesting:
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* Project or run description.

* Number of transponders (4).

Global standard deviation to be given to the Pegasus z
coordinates (2.00).

Convergence limit for adjustment and number of iterations
(entered separately) (1.000), (4).

From then on the program works on its own, finally

producing whatever output has been requested in the output

file.

2. Brief ProQram Outline

* Matrices are zeroed out at appropriate times.

* Pegasus data set is read in.

* Subroutine APPRO is called to calculate initial approxi-
mate coordinates of Pegasus.

* The diagonal weight matrix P1 is set up and stored in
matrix BIGP.

* Program constants are calculated.

* Weight matrix P2 is generated.

* The L, matrix is formed.

The matrices A and S are formed by calling subroutine
SETUP.

The normal matrix equations are formed block by block by
calling subroutine NORM. Outputs include the normal
matrix (ATPA), in column vector form called anorm, and
xhat the ATPL vector called xhat (which subsequently
becomes the solution vector).

Subroutine P2L2 is called to compute the P2L2 matrix and
add it to the column vector. It also increments the
diagonal elements of the normal matrix to include the
influence of P2.

The normal equations are solved by calling a user
supplied routine that will accomplish the required matrix

75



operations for producing the adjusted values with which
to correct the parameters. The IMSL routine LINV3P was
used in this study. Utilizing a symmetric storage mode,
this algorithm replaces the ATPA matrix by its inverse
which is the variance-covariance matrix of the Pegasus
and transponder positions. This (ATPA)-1 matrix can be
written to file for later access in order to produce the
error matrix required for current velocity analysis (see
Chapter V) as used in the program provided in Appendix B.

* The parameter corrections are tested to see if iteration
is required. If so, the program then updates the
parameters and goes through the process again for as many
iterations as are called for, or until the convergence
limit has been reached.

* Residuals and the aposteriori variance of unit weight are
computed by calling subroutine RESID. (Residuals here
are, of course, given in units of seconds since they
relate to time interval observations.)

3. Program Outputs

Outputs include:

* Original data set and interactive information given at
the beginning of the program.

* Adjusted parameters following each interaction.

* Residuals and aposteriori variance of unit weight.

* Any other information requested to be written to a file.

For this study a piece of code, Subroutine MAT, was

attached at the end of the program to pick out from the anorm

vector only the data required for current velocity analysis.

This subroutine is called after the write statement for the a

posteriori variance of unit weight which uses format statement

#175. The anorm vector is the upper tridiagonal of the

(ATPA)-1 variance-covariance matrix stored in column vector

form. (See the diagram in Chapter V.)
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The position of the variance of each parameter can be

obtained by:

N x(N +1)
2

where N is the place number of the parameter. For example,

suppose the variance for the Pegasus y coordinate in the

second record was requested. YP2 is the 5th parameter--XP1,

YPl, ZP1, XP2, YP 2, ... , (5*6)/2 = 15. The variance for YP2,

therefore, will occupy the 15th place in the anorm vector.

XP1  YP1  ZP1  XP2  YP2 ZP2

1 2 4 7 11 16
Peg. Pos. 1 3 5 8 12 17 . . .

6 9 13 18 . . .
10 19

Peg. Pos. 2 20 . . .
21 . . .

The subroutine Mat picks up only those values in the

anorm vector that fill the 3 x 3 variance-covariance matrix of

each Pegasus parameter, and the 3 x 3 covariance portion that

relates each parameter to the next one in line. A sample of

the output follows:
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Var-ovar24.2487314S96S941 18.4320080410l266140 0.56 463907E0

Varcov10I.6328080419246140 39.092S49IS7711S4 -O.SS77SO5OIO4OS
Pos 1. 0.36446390?E -O.S91SOS777SOS010GO5 0.260711ISWOS24

Covar 22.700792392SSS46 IS.S979I1731243 *.6512602515046OS242E-01

Pos 1-Pos 2 lS4S:I1SSS3 @OO44642I.43;4936:SS629E-01

Var-covar 24091O94I6 16.6o9eimziia41093u 0.7239i7442167S408I5E-01

Pos 2 10-0901621141093S 119027O 26 -O.59SO966SOU6319S7
Po0 .7259I174621678480SE-01 -05596SO67S 0.26O0o90ISS73901335

C vr22.S671IS119S261941 1s.SI091SS904SI9001 O.ASS7794a176095404E-OI
Covar SSSOSSIS6424 59.a4497S~OMZI112I -0.44S9S4ZI638SIIZ~f

Pos 2-Pos 3 0.636726100041990147E-01 -043142367I O.SIOS74U?777?SS941E-01

23.r-covar 0936 II.S94349942046341 O.StS971.256676IS7824E-81

Pos 3 ISS4494864 399926S446 -OS3?695319
*.S9112I3E647 82?S 4E-@I -C P M 193319 0.2SVIP5690776073099

The first set of three lines with three values each is the

variance-covariance matrix for Pegasus position 1, which is

symmetric. The second three lines of three values is the

covariance matrix for position 1 and position 2

(nonsymmetric) . The third set of three lines is the variance-

covariance matrix for Pegasus position 2 (symmetric), and so

on.

The final 30 lines in the output provide the variances

of the transponder coordinates and all the covariances between

them.
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C PROGRAM PEGASUS
C

C * *
C * COMMENTS GIVING A DESCRIPTION OF THE PROGRAM *
C * *
C ****************************************************************
C

IMPLICIT REAL*8 (A-H,O-Z)
C
Cc @ @
C @ SET MATRIX VARIABLES TO THEIR MAXIMUM SIZES. THE VARIABLES @
C @ USED ARE AS FOLLOWS: @
C @ N = MAX. # OF PEGASUS POSITIONS TO BE DETERMINED (20 ) @
C @ NT = MAX. # OF TRANSPONDERS IN THE NETWORK (4) @
C @ NP = MAX. # OF PARAMETERS ALLOWED = (N*3) + (NT*3) @
C @ NOBS= MAX. # OF OBSERVATIONS = N*NT @
C @ NV = MAX. # OF NON-ZERO VALUES IN THE A MATRIX = 6*NT*N @
C @ NN = MAX. # OF ELEMENTS IN THE UPPER TRIANGULAR PORTION @
C @ OF THE NORMAL MATRIX = NP*(NP + 1)/2 @
C @ @
C @ THE FOLLOWING MATRICES MUST BE DIMENSIONED TO THEIR MAX. @
C @ SIZE PRIOR TO THE PROGRAM BEING USED. @
C @ @
C @ XO(NP), P(NT,NT), BIGP(NT,NOBS),LB(NOBS,1), TRANS(NT), @
C @ X(NT) ,Y(NT), Z(NT) ,A(NT, 3), S(NT, NT*3), VALUE(NV), ATP(NT, 3), @
C @ ATPA(3,3), ATPS(3,NT*3), ATPL(3,1), STP(NT*3,NT),SV(N) @
C @ STPS(NT*3,NT*3), STPL(NT*3,1), LI(NOBS,1), L(NT,1), @
C @ ICOL(NV),IROW(NV), SPS(NT*-3,NT*3),SPL(NT*3,1),ANORM(NN), @
C @ XHAT(NP),XA(NP),VTP(1,NT),V(NT, 1),VI(NOBS),SIG(i, 1), @
C @ SDX(NT),SDY(NT),SDZ(NT),P2(NP),L2(NP),LB2(NP),AUX(2) @
c @ @
C @ NOTE: THE SAME TRANSPONDERS MUST APPEAR IN EVERY PEGASUS @
C @ POSITION. A RECORD IN WHICH ONE (OR MORE) DROP OUT @
C @ IS NOT ALLOWED. @
C @ @
C
C

DIMENSION XO( 72),P(4,4),BIGP(4, 80),TRANS(4),X(4),Y(4),Z(4),
1 A(4,3),S(4,12),VALUE(480 ),ATP(4,3),ATPA(3,3),ATPS(3,12),SV(20),
2 AliPL(3,1), STP(12,4), STPS(12,12), STPL(12,1), ANORM( 2628),
3 XHAT( 72),XA( 72),VTP(1,4),V(4,1),VI( 80),SIG(I,I), SDX(4),
4 SDY(4), SDZ(4), P2( 72), AUX(2)

C
DOUBLE PRECISION LB( 80,1), LI( 80,1), L(4,1), L2( 72), LB2( 72)

C
CHARACTER*12 PROJ

C
INTEGER*2 ICOL(480 ), IROW(480 )

C
COMMON SPS(12,12), SPL(12,1)

C
Cc @ @
C @ READ IN THE FIXED DATA AND ANY ASSOCIATED VARIANCES @
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C @ UNITS 5 AND 6 READ AND WRITE FROM AND TO THE SCREEN @
C @ FOR INTERACTIVE PROCESSING. UNITS 1 AND 2 READ AND @
C @ WRITE FROM AND TO DISK FILES. @
C @ @

C
C

WRITE(6,*) 'PROJECT OR RUN DESCRIPTION (TO 60 CHARACTERS)'
READ(1,10) PROJ

10 FORMAT(A12)
WRITE(6,*) 'NUMBER OF TRANSPONDERS (THEIR COORDINATES AND STD. ',
1 'DEVIATIONS TO BE READ FROM THE DISK FILE)'
READ(1,*) NT
READ(1,*) (X(I),Y(I),Z(I), I=,NT)
READ(1,*) (SDX(I),SDY(I),SDZ(I), I = 1,NT)
WRITE(6,*) 'THE GLOBAL STD. DEVIATION TO BE GIVEN TO THE ',
1 'Z PEGASUS COORDINATES'
READ(1,*) SDZP
WRITE(6,*) 'CONVERGENCE LIMIT FOR ADJUSTMENT AND # OF ITERATIONS'
READ(1,*) TOL, NITER
WRITE(2,15) PROJ,NT,(X(I),SDX(I),Y(I),SDY(I),Z(I),SDZ(I),I =1,NT)

15 FORMAT('I',///,SX,70('*'),//,1OX,A60,//,SX,70('*'),//,10X,
1 'NUMBER OF TRANSPONDERS =',I2,//,'TRANSPONDER COORDINATES AND ',
2 'THEIR STANDARD DEVIATIONS' ,//,4(IOX,3(F1O. 2,2X,F6.2),/),///)
WRITE(2,16) SDZP

16 FORMAT(' ',5X,'THE GLOBAL STANDARD DEVIATION FOR THE PEGASUS ',
I 'Z COORDINATES =',F7.2)
WRITE(2,17) TOL, NITER

17 FORMAT(' ',//,5X,'THE CONVERGENCE LIMIT FOR THE ADJUSTMENT ',
1 F7.3,//,6X,'THE NUMBER OF ITERATIONS ALLOWED =', 13,///,
2 50X,'INPUT DATA',//,SX,'PRESS.',4X,'ZP TIME DELAY 1',2X,
3 'TIME DELAY 2',2X,'TIME DELAY 3' ,2X,'TIME DELAY 4', 5X,'SOUND ',
4 'VELOCITY' ,2X,'APPROX. PEGASUS POSITIONS(X,Y,Z)',/)

C
C @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
C @ @
C @ READ IN THE PEGASUS DATA, POSITION BY POSITION @
C @ @
C @@@@@@@@@@@@@@@@@@@@@@@@@@a@@@@@@@@@@@@@@@@-@
C
C FIRST ZERO OUT THE P MATRIX
C

DO 20 1 = 1,NT
DO 20 J = iNT
P(I,J) = O.ODO

20 CONTINUE
N 0

25 READ(l,*, END = 45) PRESS, ZP,(TRANS(I), I=1,NT),SV(N+1)
NNT = N*NT
DO 30 I = 1,NT
LB(NNT + I,l) = TRANS(I)

30 CONTINUE
C
C CALCULATE THE APPROXIMATE POSITION OF PEGASUS
C
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CALL APPRO(TRANS,X,Y,Z,SV(N+1),NT,AUX,XP,YPZP)
C

XO(N*3 + 1) = XP
XO(N*3 + 2) = YP
XO(N*3 + 3) = ZP
WRITE(2 32) PRESS,ZP,(TRANS(I),I=1,NT),SV(N+1),XP,YP,ZP

32 FORMAT( 3X,F7. 2,2X,F7. 2,5X,F7.4,3(6X,F7.4),13XF8.3,7X,
1 3(2X,F7. 1))

C
C DO ERROR PROPAGATION AND FORM THE P MATRIX FOR THE FIRST PEGASUS
C POSITION. STORE THIS IN MATRIX BIGP. THE ERROR PROPAGATION
C SUBROUTINE MUST BE INSERTED HERE AND THE NEXT FEW LINES OF CODE
C MODIFIED ACCORDINGLY.
C
C &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
C
C FOR INITIAL PROGRAM TESTING, INSERT DIAGONAL VALUES ONLY
C

DO 35 1 = 1,NT
P(I,I) = 1.ODO/0.0005D0**2

35 CONTINUE
C &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
C

DO 40 I = 1,NT
DO 40 J = 1,NT
BIGP(I,NNT + J) = P(I,J)

40 CONTINUE
NN+ 1
GO TO 25

45 CONTINUE
C
C CALCULATE PROGRAM CONSTANTS
C

NMAX = N
NP = N*3 + (NT*3)
NOBS = N*NT
NV = (6*NT) * N
NN = NP*(NP+1)/2
NT3= NT*3.
ITER = 0
WRITE(2,46) NMAX,NOBS,NP

46 FORMAT('1',///,5X,'ACTUAL # OF PEGASUS POSITIONS =,I5,//,
1 5X,'TOTAL # OF OBS. ON PEGASUS =',15,//,
2 5X,'TOTAL # OF PARAMETERS =',I5)

C

c @ @
C @ SET UP THE MATRICES NEEDED FOR THE ADJUSTMENT, BEGINNING @
C @ WITH THOSE ASSOCIATED WITH THE "OBSERVED" PARAMETERS. @
C @ MOST OF THESE NEED TO BE ZEROED OUT AT THIS POINT. @
C @ @
C @ THEN SET UP THE NORMAL MATRIX BLOCK BY BLOCK, EACH BLOCK @
C @ CORRESPONDING"TO A NEW PEGASUS POSITION @
C @ @
C @@ @ @@@ @@@@@@@@@
C
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C ZERO OUT MATRICES
C

DO 50 1 1,NP
LB2(I) = .ODO
P2(I) = O.ODO
L2(I) = O.ODQ
XHAT(II) = O.ODO

50 CONTINUE
C
C INSERT THE NON-ZERO ELEMENTS
C

J = N'*3
DO 55 I = 3,J,3
P2(I) = 1.ODOISDZP**2
LB2(I)= XO(I)

55 CONTINUE
C

J N'*3 + 1
K 1
DO 58 I = ,NP,3
XO(I) =X(K)
P2(I) =1.ODO/SDX(K)**2
LB2(I) =XO(I
XO(I+l) =Y(K)
P2(1+1) = 1.ODO/SDY(K)**2
LB2(I+1)= XO(I+1)
XO(I+2) =Z(K)
P2(1+2) =1. 0D0/SDZ(K)**2
LB2(I+2)= XO(I+2)
K=K + 1

58 CONTINUE
WRITE(2,800)(LB(I ,1),I=1,NOBS)

800 FORMAT( '1' ,///,50X,'LB MATRIX' ,//,B(lX,10(FlO. 7,2X)/),1X,2F10. 7)
WRITE(2,801)(XO(I) ,I=1,NP)

801 FORMAT('O'///,50X,'XO VECTOR' ,//,8(lX, 10(F10. 4,2X)/), 1X,F1O. 4)
WRITE(2,802)(P2(I) ,I=1,NP)

802 FORMAT('OV,///,S5OX,'P2 VECTOR',//,8(lX,10(FlO.4,2X)/),lX,F10.4)
WRITE 2 ,803)(LB2C1) ,I=1 ,NP)

803 FORMAT( -0' ,/50OX, 'LB 2 VECTOR' ,.8 ( 1X, 10(F 10.4, 2X)/)1X, F 10.4)
C

C @@
C @ THE ITERATIVE PROCESS BEGINS FROM HERE. BEGIN BY ZEROING @
C @ OUT THE NORMAL MATRIX AND THE TWO COMMON BLOCK MATRICES @
C @@
C

60 DO 62 I = 1,NT3
SPL(I,l) = 0.ODO
DO 62 3 = 1,NT3
SPS(I,J) = O.ODO

62 CONTINUE
DO 65 I = 1,NN'
ANORM(I) =0.0DO

65 CONTINUE
C
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K= 1
J = N*3 + 1
DO 66 I = J,NP,3
X(K) = XO(I)
Y(K) XO(I+I)
Z(K) = XO(I+2)

K = K+l
66 CONTINUE

C
C
C BEGIN THE FORMATION OF THE A AND Li MATRICES
C

DO 100 K = 1,NMAX
JJ = (K-1)*NT
DO 68 I = 1,NT
TRANS(I) = LB(JJ + 1,1)
DO 68 J = 1,NT
P(I,J) = BIGP(I,JJ + J)

68 CONTINUE
KK = (K-1)*3
XP = XO(KK + 1)
YP = XO(KK + 2)
ZP = XO(KK + 3)

C
C

DO 70 I = 1,NT
LI(JJ + I,i) = (DSQRT((XP-X(I))**2 + (YP-Y(I))**2 + (ZP-Z(I))**2)
1 /SV(K)) - TRANS(I)
L(I,I) = LI(JJ + I,1)

70 CONTINUE
C
C ZERO OUT THE A AND S SUBMATRICES
C

DO 80 1 = 1,NT
DO 75 J = 1,3
A(I,J) = O.ODO

75 CONTINUE
DO 80 J = 1,NT3
S(I,J) = 0.ODO

80 CONTINUE
C

CALL SETUP(X,Y,Z,XP,YP,ZP,SV(K),K,NT,NV,NT3,NMAX,A,S,ICOL,IROW,
1 VALUE)

C
CALL NORM(A,S,P,L,K,NT,NT3,NN,NP,NMAX,ATP,ATPA,ATPSATPL,STP,
1 STPS,STPL,ANORM,XHAT)

100 CONTINUE
C

WRITE(2,804)(LI(I,I),I=I,NOBS)

804 FORMAT('',///,50X,'L1 MATRIX' ,//,8(1X,10(F1O.7,2X)/),lX,2FlO. 7)
C
C PLACE SPS AND SPL INTO THE NORMAL MATRIX AND THE COLUMN VECTOR
C RESPECTIVELY.
C

DO 110 1 = 1,NT3
NCOL = (NP + 1) - I
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I1 = NCOL*(NCOL + 1)/2 + I
DO 110 J = I,NT3
12 = I - J
ANORM(12) = SPS(NT3-J+I,NT3-I+1)

110 CONTINUE
13 = NMAX*3 + 1
DO 120 I = 13,NP
XHAT(I) = SPL(I-I3+l,I)

120 CONTINUE
C
C SET UP THE L2 MATRIX AND ADJUST THE DIAGONAL ELEMENTS OF THE
C NORMAL MATRIX FOR THE INFLUENCE OF P2
C

CALL P2L2(P2,LB2,XOANORM,L2,XHAT,NP,NN)
C

C @ @
C @ SOLVE THE NORMAL EQUATIONS AND COMPUTE THE RESIDUALS @
C @ @
C @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e-@@QQ@@

C CALL A USER SUPPLIED ROUTINE TO SOLVE THE NORMAL EQUATIONS.
C (SEE APPENDIX A, SECTION D.)

DO 135 1 = 1,NP
XHAT(I) = -XHAT(I)
XA(I) = XO(I) + XHAT(I)
XO(I) = Xk(I)

135 CONTINUE
ITER = ITER + I
WRITE(2,140)

140 FORMAT('O',///,5X,'ADJUSTED PEGASUS POSITIONS (WITH THE '
1 'CORRECTIONS TO THE APPROX. POSITIONS IN PARENTHESES)',/!, 18X,
2 'X',18X,'Y',18X,'Z')
J = NP - NT3
DO 145 I=1,J,3
WRITE(2,142) XA(I),XHAT(I),XA(I+I),XHAT(I+I) ,XA(I+2),
1 XHAT(I+2)

142 FORMAT(' ',IOX,F9.3,2X,'(',F6. 1,')',2(2X,F9. 3,2X,'(',F6.1,')'))
145 CONTINUE

JJ+ 1
WRITE(2,146)

146 FORMAT( ' ' ,//,5X,'ADJUSTED TRANSPONDER POSITIONS (WITH',
1 'CORRECTIONS TO THE APPROX. POSITIONS IN PARENTHESES)')
DO 148 I=J,NP,3
WRITE(2,142) XA(I),XHAT(I),XA(I+1),XHAT(I+I),XA(I+2),
1 XHAT(I+2)

148 CONTINUE
C
C TEST THE PARAMETER CORRECTIONS TO SEE IF ITERATION IS REQUIRED
C

IFLAG = 0
DO 150 I =1,NP
IF(DABS(XHAT(I)).GT.TOL)IFLAG = IFLAG + 1

150 CONTINUE
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C COMMENT OUT THE NEXT THREE STATEMENTS DURING PROGRAM DEVELOPMENT
IF(IFLAG.EQ.0) GO TO 155

IF(ITER. LT. NITER) GO TO 60
C
C COMPUTE THE RESIDUALS
C

155 CALL RESID(VALUE,ICOL,IROW,BIGP,L,XHAT,NMAX,NT,NV,NP,NOBS,
1 P,VTP,V,SIG,V1,SIGO)

C
WRITE(2 160)

160 FORMAT( 1',///,1OX,'OBSERVATIONAL RESIDUALS AFTER THE ADJUSTMENT',
1 //,5X,'TRANSPONDER I TRANSPONDER 2 TRANSPONDER 3',4X,
2'TRANSPONDER 4')
DO 170 1 = 1,NOBS,NT
WRITE(2 ?165)(VI(I+K-1), K =I,NT)

165 FORMAT( ,9X,F8.4,3(9X,F8.4))
170 CONTINUE

WRITE(2 175) SIGO
175 FORMAT(- ///,5X, 'THE A POSTERIORI VARIANCE OF UNIT WEIGHT ',

1 F8.4)
C
C *THE FOLLOWING WRITE STATEMENT WAS ADDED BY M. HASKELL TO LOOK
C *AT THE VARIANCE-COVARIANCE MATRIX FOR POSITION COORDINATES.
C *THE CALL STATEMENT FOR SUBROUTINE MAT WAS ADDED TO ACCESS ONLY
C *THE INFORMATION NEEDED TO CALCULATE THE VARIANCES AND COVARIANCES
C *OF THE VELOCITIES.
C
C WRITE(2,*)(ANORM(II),II=1,NN) *PROVIDES (ATPA)- 1 IN VECTOR FORM

CALL MAT(ANORM,NMAX)
C
C@@
C @ @
C @ COMPUTE VARIOUS STATISTICAL QUANTITIES INCLUDING THE @
C @ VELOCITY OF PEGASUS. @
C @ @
C @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
C

STOP
END

C @@@@@ @@@@ @@@@@@@ @@@@ @@
C @ @
C @ SUBROUTINES USED IN THE PROGRAM @
C @ @
c @@@@@ C<@@@@@@@@@@@@@@@@@@@@@
C

SUBROUTINE APPRO(TRANS,X,Y,Z,SV,NT,AUX,XP,YP,ZP)
IMPLICIT REAL*8(A-H,O-Z)

C
C THIS SUBROUTINE COMPUTES THE APPROXIMATE COORDINATES FOR PEGASUS
C INPUT: TRANS - VECTOR OF TRANSPONDER TIME DELAYS FOR THE DESIRED
C PEGASUS POSITION.
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C X,YZ - ARRAYS CONTAINING THE COORDINATES OF THE TRANSPONDERS
C SV - VELOCITY OF SOUND IN WATER
C NT - NUMBER OF TRANSPONDERS
C OUTPUT:XP,YP,ZP - COORDINATES OF PEGASUS
C

DIMENSION TRANS(NT), X(NT),Y(NT),Z(NT),AUX(2)
C

DO 10 I = 1,NT
TRANS(I) = TRANS(I)*SV

10 CONTINUE
DO 20 1 = 1,2
AUX(I) = (TRANS(I+1)**2 - (ZP-Z(I+1))**2 - X(I+1)**2 - Y(I+1)**2)
1 - (TRANS(I)**2 - (ZP-Z(I))**2 - X(I)**2 - Y(I)**2)

20 CONTINUE
YP = 0.5DO*(AUX(1)/(X(1)-X(2)) - AUX(2)/(X(2)-X(3)))/((Y(1)-Y(2))
1 /(X(1)-X(2)) - (Y(2)-Y(3))/(X(2)-X(3)))
XP = 0.5DO*(AUX(1)/(Y(1)-Y(2)) - AUX(2)/(Y(2)-Y(3)))/((X(1)-X(2))
1 /(Y(1)-Y(2)) - (X(2)-X(3))/(Y(2)-Y(3)))
DO 30 1 1,NT
TRANS(I) = TRANS(I)/SV

30 CONTINUE
RETURN
END

SUBROUTINE SETUP(X,Y,Z,XP,YP,ZP,SV,N,NTNV,NT3,NMAX,A,S,ICOL,IROW,
1 VALUE)
IMPLICIT REAL*8(A-H,O-Z)

C
C THIS MATRIX SETS UP THE A AND S MATRICES NEEDED FOR THE BLOCK
C BY BLOCK FORMATION OF THE NORMAL MATRIX.
C INPUT: X(I), I = 1,NT X COORDINATES FOR THE TRANSPONDERS
C Y(I), I = 1,NT Y " it

C Z(I), I = 1,NT Z " If

C XP,YP,ZP, APPROXIMATE COORDINATES FOR PEGASUS.
C SV = VELOCITY OF SOUND THROUGH WATER.
C N = NTH POSITION OF PEGASUS.
C NT, NV, NT3 SAME AS IN THE MAIN PROGRAM.
C NMAX = ACTUAL #/ OF PEGASUS POSITIONS IN THIS DROP
C OUTPUT: A = THE PORTION OF THE A MATRIX CORRESPONDING TO THE
C NTH PEGASUS POSITION.
C S = AS ABOVE, BUT THE OUTER BAND OF THE A MATRIX.
C VALUE = THE NON ZERO # IN THE A MATRIX CORRESPONDING
C TO THE COLUMN # HELD IN ICOL AND THE ROW # HELD
C IN IROW.
C

DIMENSION X(NT), Y(NT), Z(NT), A(NT,3), S(NT,NT3), VALUE(NV)
INTEGER*2 ICOL(NV), IROW(NV)

C
NROW = (N-1)*NT
NCOL = (N-1)*3
NCOLl = NMAX*3
ICOUNT = (N-1)*6*NT
DO 20 1 = 1,NT
J= 1
K = (1-1)*3 + 1
DIST = DSQRT((XP - X(I))**2 + (YP - Y(I))**2 + (ZP - Z(I))**2)
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ACI,J) = (XP - X(I))/(DIST*SV)
ICOUNT = ICOUNT + 1
VALUE(ICOUNT) =A(I,J)
IROW(ICOUNT) =NROW + I
ICOL(ICOUNT) =NCOL + J
A(I,J+1) = (YP - Y(I))/(DIST*SV)
ICOUNT = ICOUNT + 1
VALUE(ICOUNT) =ACI,J+l)
IROW(ICOUNT) =NRO W + I
ICOL(ICOUNT) =NCOL + J+1
A(I,J+2) = (ZP - Z(I))/(DISPfcSV)
ICOUNT = ICOUNT + 1
VALUE(ICOYNT) =A(I,J+2)
IROW(ICOUNT) =NROW + I
ICOL(ICOUNT) =NCOL + J+2
S(I,K) = -A(I,J)
ICOIJNT = ICOUNT + 1
VALUE(ICOUNT) = S(I,K)
IROW(ICOUNT) = NROW + I
ICOL(ICOJNT) = NCOL1 + K
S(I,K+1) = -A(I,J+1)
ICOUNT = ICOUNT + 1
VALUE(ICOUNT) =S(I,K+1)
IROW(ICOUNT) =NROW + I
ICOL(ICOUNT) NCOLI + K+1
S(I,K+2) = -A(I,J+2)
ICOUNT = ICQUNT + 1
VALUE(ICOUNT) =S(I,K+2)
IROW(ICOUNT) =NROW + I
ICOL(ICOUNT) =NCOL1 + K+2

20 CONTINUE
WRITE(2,100)

100 FORMAT(' 1',///,15X,'A MATRIX AND THEN THE S MATRIX, BLOCK BY',
1 1 BLOCK')
WRITE(2,1O1)((A(I,J),J=1,3),I=1,4)

101 FORMAT(' I, T2,4(2X,3(F1O.8,3X),/))
WRITE(2,102)((S(I,J),J=1, 12), I=1,4)

102 FORMAT(' ',T2,4(12(F1O.7,1X),/))

RETURN
END

SUBROUTINE NORM(A,S,P,L,N,NT,NT3,NN,NP,NMAX,ATP,ATPA,ATPS,ATPL,
1 STP,STPS,STPL,ANORI,XHAT)
IMPLICIT REAL*B(A-H,O-Z)

C
C THIS SUBROUTINE FORMS THE NORMAL EQUATIONS, BLOCK BY BLOCK
C INPUT: A MATRIX FROM SUBROUTINE SETUP
C S of I I I

C P THE WEIGHT MATRIX CORRESPONDING TO THIS BLOCK
C L THE L MATRIXoff
C N, NT, NT3, AS FOR SUBROUTINE SETUP
C NN, NP, NMAX, AS FOR MAIN PROGRAM
C OUTPUT: A NUMBER OF AUXILLARY MATRICES USED IN THE MATRIX
C MULTIPLICATIONS, IE. , ATP,ATPA,ATPS,ATPL,STP,STPS,
C AND STPL.
C MATRICES SPS AND SPL WHICH COME IN VIA THE COMMON
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C BLOCK ARE UPDATED.
C ANORM -THE NORMAL MATRIX (IN ARRAY FORM)
C XHAT -THE ATPL VECTOR
C

DIMENSION A(NT,3), S(NT,NT3),P(NT,NT),ATP(NT,3), ATPA(3,3),
1 ATPS(3,NT3), ATPL(3,1), STP(NT3,NT), STPS(NT3,,NT3),STPL(NT3,1),
2 ANORM(NN) ,XHAT( NP)
DOUBLE PRECISION L(NT,1)
COMMON SPS(12,12), SPL(12,1)

C
C PERFORM THE MATRIX MULTIPLICATIONS
C

CALL ATB(A,P,ATP,NT,3,NT)
CALL AB(ATP,A,ATPA,3,NT,3)
CALL AB(ATP,S,ATPS,3,NT,NT3)
CALL AB(ATP,L,ATPL,3,NT,1)
CALL ATB(S,P,STP,NT,NT3,NT)
CALL AB(STP,S,STPS,NT3,NT,NT3)
CALL AB(STP,L,STPL,NT3,NT,1)
WRITE(2 I 100)((ATPA(I,J),J=1,3),ATPL(l,l),I=1,3)

100 FORMAT( ',/,15X, 'ATPA BLOCK' ,10X,'ATPL VECTOR' ,//,
1 3(2X,3(D1O.3 2), 4X,D1O.3,/))
WRITEC2 ?11O)(( APS( I, J),J=1, 1.2), I=1,12)

110 FORMAT( ',/,15X, 'STPS BLOCK',//,
1 T2,12(12(D1O.3,lX),/))

C
C PLACE ATPA AND ATPL IN THEIR APPROPRIATE POSITION IN EITHER THE
C NORMAL MATRIX OR THE COLUMN VECTOR
C

NCOL =.(N-1)*3 + 1
Il = NCOL*(NCOL + 1)/2
ANORM(I1) = ATPA(1,1)
Ill = Il + NCOL

*ANORM(I11) = ATPA(1,2)
ANORM(I11 + 1) =ATPA(2,2)
Il11 = Ill + 1 + NCQL
ANORM(I111) = ATPA(1,3)
ANORN(I111 + 1) = ATPA(2,3)
ANORM(I111 + 2) = ATPA(3,3)

C
DO 10 I = 1,NT3
INT = (NMAX*3) + I
J = INT-'(INT - W)2 + 1 + (N-1)*3
ANORM(J) = ATPS(1,I)
ANORM(J+1) = ATPS(2,I)
ANORM(J+2) = ATPS(3,I)

10 CONTINUE
C

DO 20 I = 1,3
XHAT(NCOL+I-1) =ATPL(I,1)

20 CONTINUE
c
C UPDATE SPS AND SPL
C

DO 30 I = 1,NT3
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SPL(I,1) = SPL(I,1) + STPL(I,1)
DO 30 J = 1,NT3
SPS(I,J) = SPS(I,J) + STPS(I,J)

30 CONTINUE
RETURN
END

SUBROUTINE ATB(A,B,R,L,M,N)
IMPLICIT REAL*8(A-H,O-Z)

C
C THIS SUBROUTINE COMPUTES THE MATRIX PRODUCT A'B
C INPUT: MATRIX A (L X M)
C MATRIX B (L X N)
C OUTPUT MATRIX R (M X N)
C

DIMENSION A(L,M),B(L,N),R(M,N)
DO 10 I = 1,M
DO 10 J = 1,N
R(I,J) = O.ODO
DO 5 K = 1,L
R(I,J) = R(I,J) + A(K,I)*B(K,J)

5 CONTINUE
10 CONTINUE

RETURN
END

SUBROUTINE AB(A,B,R,L,M,N)
IMPLICIT REAL*8(A-H,O-Z)

C
C FORM THE MATRIX PRODUCT R = AB.
C THE MATRICES A AND B ARE RETURNED UNCHANGED
C

DIMENSION A(L,M),B(M,N),R(L,N)
DO 5 1 = I,L
DO 5 J = 1,N
R(I,J) = O.ODO
DO 5 K = 1,M
R(I,J) = R(I,J) + A(I,K)*B(K,J)

5 CONTINUE
RETURN
END

SUBROUTINE RESID(VALUE,ICOL,IROW,BIGP,Ll,XHAT,NMAX,NT,NV,NP,NOBS,
1 P,VTP,V,SIG,V1,SIGO)
IMPLICIT REAL*8(A-H,O-Z)

C
C COMPUTES THE RESIDUALS ON ALL THE TRANSPONDER TIME DELAY
C OBSERVATIONS AND THE A POSTERIORI VARIANCE OF UNIT WEIGHT.
C INPUT: VALUE, ICOL,IROW,- MATRICES DERIVED IN SUBROUTINE SETUP
C BIGP - THE FULL WEIGHT MATRIX FOR ALL OBSERVATIONS
C Li - THE VECTOR OF "COMPUTED-OBSERVED" OBSERVATIONS
C XHAT - THE LEAST SQUARES SOLUTION VECTOR
C NMAX,NT,NV,NP,NOBS - AS IN THE MAIN PROGRAM
C AUXILLARY MATRICES : P, VTP, V,SIG
C OUTPUT:VI - THE VECTOR OF RESIDUALS
C SIGO - THE A POSTERIORI VARIANCE OF UNIT WEIGHT
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C
DIMENSION VALUE(NV),XHAT(NP),V1CNOBS),BIGP(NT,NOBS),P(NTLNT),
1 VTP(1,NT),SIG(1,1),V(NT,1)
DOUBLE PRECISION L1(NOBS)
INTEGER*2 ICOL(NV), IROW(NV)

C
DO 10 I = 1,NOBS

ViIM = .ODO
10 CONTINUE

IC = 1
15 DO 20 1= 1,NV

IF(IROW(I).NE. IC) GO TO 18
16 Vl(IC) = V1(IC) + VALUE(I)*XHAT(ICOL(I))

GO TO 20
18 V1( IC) = ViC IC) + LiC IC)

IC = IC + 1
IF(IC.LE.NOBS) GO TO 16

20 CONTINUE
Vl(NOBS) = Vf(NOBS) + L1(NOBS)

C
SIGO = O.ODO
IC = 0
DO 40 I = 1,NMAX

DO 30 J =1,NT

V(J,l) =V1(IC*NT + J)
DO 30 K =1,NT
P(J,K) =BIGP(J,IC*NT + K)

30 CONTINUE
CALL ATB(V,P,VTP,NT,1,NT)
CALL AB(VTP,V,SIG1I,NT,1)
SIGO SIGO + SIG(1,1)
IC =IC + 1

40 CONTINUE
SIGO = SIGO/FLOAT(NOBS-NMAX*3)
RETURN
END

SUBROUTINE P2L2(P2,LB2,XO,ANORM,L2,XIIAT,NP,NN)
IMPLICIT REAL*8(A-1{,O-Z)

C
C THIS SUBROUTINE COMPUTES THE L2 MATRIX AND ADDS IT TO THE COLUMN
C VECTOR. IN ADDITION IT INCREMENTS THE DIAGONAL ELEMENTS OF THE
C NORMAL MATRIX TO INCLUDE THE INFLUENCE OF P2
C

DIMENSION P2(NP), XO(NP) ,ANORM(NN) ,XHAT( NP, 1)
DOUBLE PRECISION L2(NP), LB2(NP)

DO 10 I = 1,NP
L2(I) = XOCI) - LB2(I)
INT = 1*(1+1)/2
ANORK(INT) = ANORM(INT) + P2(1)
P2L = P2(I)*L2(I5
XlfAT(I, 1) =XlIAT(I,l) + P2L
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10 CONTINUE
RETURN
END

C
SUBROUTINE MAT( C, NiAX)

C *NOT~ PART OF J HANNAH'S ORIGINAL PROGRAM. ADDED BY M. HASKELL.
C THIS PROGRAM READS APPROPRIATE VALUES FROM THE VARIANCE-COVARIANCE
C MATRIX FILE (ANORM) AND PLACES THEM IN THE M4ATRICES NEEDED TO CON-
C PUTE VARIANCES OF THE CURRENT VELOCITIES.

IMPLICIT REAL*8 (A-H,O-Z)
DOUBLE PRECISION C(1)

C DIMENSION C(444153)
I(K) = K*(K+1)/2
K =1
ROW =K
WRITE (2,*)C(I(K)), C(I(K+1)-l), C(I(K+2)-2)
WRITE (2,*)C(I(K+1)-1), C(I(K+1)), CCI(K+2)-1)
WRITE (2,*)C(I(K+2)-2), C(I(K+2)-l), C(I(K+2))
DO 15 J = l,NMAX+l

WRITE (2,*)C(I(K+3)-3), C(I(K+4)-4), C(I(K+5)-5)
WRITE (2,*)C(I(K+3)-2), C(I(K+4)-3), C(I(K+5)-4)
WRITE (2,*)C(I(K+3)-l), C(I(KI4)-2), C(I(K+5)-3)

C
WRITE (2,*)C(I(K+3)), C(I(K+4)-1), C(I(K+5)-2)
WRITE (2,*)C(I(K+4)-1), C(I(K+4)), C(I(K+5)-1)
WRITE (2,*)C(I(K+5)-2), C(I(K+5)-1), C(I(K+5))

K = K+3
15 CONTINUE

C
WRITE (2,*)C(I(K+3)-6), C(I(K+4)-7), C(I(K+S)-8)
WRITE (2,*)C(I(K+3)-5), C( I(K+4) -6), C(I(K+5)-7)

WRITE (2,*)C(I(K+3)-4), C(I(K+4)-5), C(I(K+5)-6)
C

WRITE (2,*)C(I(K+3)-3), C(I(IK+4)-4), C(I(K+5)-5)
WRITE (2,*)C(I(K+3)-2), C(I(K+4)-3), C(I(K+5)-4)
WRITE (2,*)C(I(K+3)-l), C(I(K+4)-2), C(I(K+5)-3)

C
WRITE (2,*)C(I(K+3)), C(I(K+4)-1), C(I(K+5)-2)
WRITE (2,*)C(I(K+4)-1), C(I(K+4)), C(I(K+5)71)
WRITE (2,*)C(I(K+S)-2), C(I(K+S)-1), CCI(K+S))

C
K = K+3
WRITE (2,*)C(I(K+3)-9), C(I(K+4)-1O), C(I(K+5)-11)
WRITE (2,*)C(I(K+3)-8), C(I(K+4)-9), C(I(K+5)-1O)
WRITE (2,*)C(I(K+3)-7), C(I(K+4)-8), C(I(K+5)-9)

C
WRITE (2,*)C(I(K+3)-6), C(I(K+4)-7), C(I(K+5)-8)
WRITE C2,*)C(I(K+3)-5), C( I(K+4) -6), C(I(K+5)-7)
WRITE (2,*)C(I(K+3)-4), C(I(K+4)-5), C(I(K+5)-6)

C
WRITE (2,*)C(ICK+3)-3), C(I(K+4)-4), C(I(K+5)-5)
WRITE (2,*)CCI(K+3)-2), C(I(K+4)-3), C(I(K+5)-4)
WRITE (2,*)C(I(K+3)-1), C(I(K+4)-2), C(I(K+S)-3)
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C
WRITE (2,*)C(I(K+e3)), C(I(K44)-]), C(1(1,+5)-))
WRITE (2,*)C(1(K+4)-1), C(I(K+4)), C(If(K4S)-l)

C WRITE (2,*)C(I(K+S)-2), C(I(K+5)-1), C(I(K+5))

C K =36
C DO 15J =1,6
C WRITE (2,*)C(I(K+3)-3), C(I(K+4)-4), C(I(K+5)-5)
C WRITE C2,*)C(I(R+3)-2), C(I(K+4)-3), C(I(K+5)-4)
C WRITE (2,*)C(I(K+3)-l), C(I(K+4)-2), C(I(K+5)-3)
C
C WRITE (2,*)C(I(K+3)), C(I(K4-4)-l), C(I(K+5)-2)
C WRITE (2,*)C(I(K+4)-l), C(I(K+4)), C(I(K+5)-1)
C WRITE (2,*)C(I(K+5)-2), C(I(K+5)-l), C(I(K+5))
C K= K+36
C 15 CONTINUE

RETURN
END
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APPENDIX B

CURRENT VELOCITY VARIANCE-COVARIANCE PROGRAM

This program computes the variance-covariance matrix of

the current velocities by a procedure described in Chapter VI,

Section D. It uses data from the Pegasus position variance-

covariance matrix produced by the Fortran program Pegasus as

described in Appendix A.
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C TIS PROGRAM USES DATA FROM rHE VARIANCE -COVARIANCE MATRIX PRODUCED
C BY THE PEGASUS FORTRAN PROGRAM. IT COMPUTES THE VARIANCE-COVARI-
C ANCE MATRIX OF THE CURRENT VELOCITIES.
C

IMPLICIT REALIV8(A-11,0-Z)
REAL SP1(3,3), SP12(3,3), SP2(3,3),V(3,3),SJ,SV,SW

C
N = 1
DO 100 I 1,3

READ(1.,*)(SP1(1,J),J = 1,3)
C WRITE(2 I120)(SP1(I,J),J = 1,3)

120 FORMAT( ',3X,F1O. 4, 3X,FI0. 4,3X,F1O. 4)
100 CONTINUE

C
10 DO 200 I 1,3

READ(1,*,END=45)(SP12(I,J),J = 1,3)
C WRITE(2,120)(SP12(I,J),J = 1,3)

200 CONTINUE
DO 300 I = 1,3

READ(1,*)(SP2C1,J),J = 1,3)
C WRITE(2,120)(SP2(I,J),J = 1,3)

300 CONTINUE
C
cc WRITE(2 I15)NVAANECVRACMTIXFR,

15 FORMAT( '/5X 'VELOCITYVAINECORACEMTXFR
1'POSITION ',f3,/)
DO 400 1 1,3

DO 350 J = 1,3

350 CONTINUE
C WRITE(2,120)(V(I,J),J = 1,3)

400 CONTINUE
SU = SQRT(V(1,1))
SV = SQRT(V(2,2))
SW = SQRT(V(3,3))

cc WRITE(2 I130)SU, SV SW
CC130 FORMAT( ' /,3kt'SIGMA U =' FlO. 4,3X,'SIGMA V =' F1O. 4,3X,
cc 1 'SIGMA W =',F1O.4/)

WRITE(2 I600)N SU,SV,SW
600 FORMAT( ',1OX,'POS ',13,3X,F7.4,3X,F7.4,3X,F7.4)

DO 450 I = 1,3
DO 460 J = 1,3
SP1(1,J) = SP2(I,J)

460 CONTINUE
C WRITE(2 140)(SP1(I,J),J=1,3)
C 140 FORMAT( ',3X,F1O.4,3X,F1O.4,3X,F1O.4)

450 CONTINUE
N = N +1
GO TO 10

45 CONTINUE
STOP
END
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